Exercise Sheet 5 Nov. 6th, 2019 WS 2019/2020

(3 Pts)

Advanced Quantum Theory

Dr. Hans Jockers und Urmi Ninad

http://www.th.physik.uni-bonn.de/klemm/advancedqm/index.php

Due Date: Nov. 13th, 2019

-Exercises-

5.1 Resonances

Suppose that in the scattering of a particle of mass m by an unknown potential, a resonance is observed at energy E_R for which the total cross section at the peak of the resonance is σ_{max} . Show how to use this data to give a value for the orbital angular momentum of the resonant state. (2 Pts)

5.2 The Square Well Potential

In this exercise we want to consider the spherically symmetric potential well in three dimensions,

$$V(r) = \begin{cases} -V_0 & r \le a \\ 0 & r > a \end{cases}, \tag{1}$$

where $V_0 > 0$ and r is the radial coordinate.

a) Recall that for a spherically symmetric potential the wavefunction can be expanded as

$$\psi(r,\theta) = \sum_{l=0}^{\infty} R_l(r) P_l(\cos\theta) , \qquad (2)$$

where $P_l(x)$ are Legendre polynomials. Solve the radial Schrödinger equation,

$$\left(\frac{1}{r^2}\frac{d}{dr}r^2\frac{d}{dr} - \frac{l(l+1)}{r^2} + \left(k^2 - \frac{2m}{\hbar^2}V(r)\right)\right)R_l(r) = 0$$
(3)

for the square well potential.

b) Recall that the scattering amplitude can be expressed in term of phase shifts,

$$f_k(\theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} (2l+1) \ (e^{2i\delta_l} - 1) P_l(\cos\theta) \ , \tag{4}$$

where each term is known as a partial wave,

$$f_l = \frac{1}{2ik} (2l+1)(e^{2i\delta_l} - 1)P_l(\cos\theta) .$$
(5)

-1 / 2 -

Use the result of part a) to show that the s-wave phase shift δ_0 yields the partial wave

$$f_0 = \frac{1}{2ik} \left(\frac{e^{-iak} (2\kappa \cot(a\kappa) \sin(ak) - 2k \cos(ak)))}{k + i\kappa \cot(a\kappa)} \right) .$$
(6)

Here $\kappa^2 := k^2 + \frac{2m}{\hbar^2} V_0$.

<u>*Hint*</u>: It might help to show first that the partial wave f_0 can be expressed as

$$f_0 = \frac{1}{k} \left(\frac{\tan \delta_0}{1 - i \tan \delta_0} \right) . \tag{7}$$

(4 Pts)

c) Show that at linear order in V_0 the first partial wave reads

$$f_0 = \frac{mV_0 \left(ak - \frac{1}{2}\sin(2ak)\right)}{\hbar^2 k^3} \ . \tag{8}$$

<u>*Hint*</u>: Use the expansion

$$\alpha\sqrt{\beta x+1}\cot\left(\alpha\sqrt{\beta x+1}\right) = \alpha\cot(\alpha) + \frac{1}{2}\alpha\beta x\left(\cot(\alpha) - \alpha\left(\frac{1}{\sin\alpha}\right)^2\right) + \mathcal{O}\left(x^2\right) \quad (9)$$

(4 Pts)

d) Using the first order Born approximation solve for the scattering amplitude $f_k^{\text{Born}}(\theta)$ and show that to the first order in energy (i.e. second order in k)

$$f_k^{\text{Born}}(\theta) = \frac{2a^3mV_0}{3\hbar^2} - \frac{4a^5k^2mV_0\sin^2\left(\frac{\theta}{2}\right)}{15\hbar^2} + \mathcal{O}(k^4) \ . \tag{10}$$

(4 Pts)

e) Compare the results of parts c) and d). (3 Pts)