Advanced Quantum Theory

Dr. Hans Jockers und Urmi Ninad

http://www.th.physik.uni-bonn.de/klemm/advancedqm/index.php
Due Date: Nov. 13th, 2019

-Exercises-

5.1 Resonances

Suppose that in the scattering of a particle of mass m by an unknown potential, a resonance is observed at energy E_{R} for which the total cross section at the peak of the resonance is $\sigma_{\text {max }}$. Show how to use this data to give a value for the orbital angular momentum of the resonant state.

5.2 The Square Well Potential

In this exercise we want to consider the spherically symmetric potential well in three dimensions,

$$
V(r)=\left\{\begin{array}{cc}
-V_{0} & r \leq a \tag{1}\\
0 & r>a,
\end{array}\right.
$$

where $V_{0}>0$ and r is the radial coordinate.
a) Recall that for a spherically symmetric potential the wavefunction can be expanded as

$$
\begin{equation*}
\psi(r, \theta)=\sum_{l=0}^{\infty} R_{l}(r) P_{l}(\cos \theta), \tag{2}
\end{equation*}
$$

where $P_{l}(x)$ are Legendre polynomials. Solve the radial Schrödinger equation,

$$
\begin{equation*}
\left(\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d}{d r}-\frac{l(l+1)}{r^{2}}+\left(k^{2}-\frac{2 m}{\hbar^{2}} V(r)\right)\right) R_{l}(r)=0 \tag{3}
\end{equation*}
$$

for the square well potential.
b) Recall that the scattering amplitude can be expressed in term of phase shifts,

$$
\begin{equation*}
f_{k}(\theta)=\frac{1}{2 i k} \sum_{l=0}^{\infty}(2 l+1)\left(e^{2 i \delta_{l}}-1\right) P_{l}(\cos \theta), \tag{4}
\end{equation*}
$$

where each term is known as a partial wave,

$$
\begin{equation*}
f_{l}=\frac{1}{2 i k}(2 l+1)\left(e^{2 i \delta_{l}}-1\right) P_{l}(\cos \theta) . \tag{5}
\end{equation*}
$$

Use the result of part a) to show that the s-wave phase shift δ_{0} yields the partial wave

$$
\begin{equation*}
f_{0}=\frac{1}{2 i k}\left(\frac{e^{-i a k}(2 \kappa \cot (a \kappa) \sin (a k)-2 k \cos (a k))}{k+i \kappa \cot (a \kappa)}\right) . \tag{6}
\end{equation*}
$$

Here $\kappa^{2}:=k^{2}+\frac{2 m}{\hbar^{2}} V_{0}$.
Hint: It might help to show first that the partial wave f_{0} can be expressed as

$$
\begin{equation*}
f_{0}=\frac{1}{k}\left(\frac{\tan \delta_{0}}{1-i \tan \delta_{0}}\right) . \tag{7}
\end{equation*}
$$

c) Show that at linear order in V_{0} the first partial wave reads

$$
\begin{equation*}
f_{0}=\frac{m V_{0}\left(a k-\frac{1}{2} \sin (2 a k)\right)}{\hbar^{2} k^{3}} . \tag{8}
\end{equation*}
$$

Hint: Use the expansion

$$
\begin{equation*}
\alpha \sqrt{\beta x+1} \cot (\alpha \sqrt{\beta x+1})=\alpha \cot (\alpha)+\frac{1}{2} \alpha \beta x\left(\cot (\alpha)-\alpha\left(\frac{1}{\sin \alpha}\right)^{2}\right)+\mathcal{O}\left(x^{2}\right) \tag{9}
\end{equation*}
$$

d) Using the first order Born approximation solve for the scattering amplitude $f_{k}^{\text {Born }}(\theta)$ and show that to the first order in energy (i.e. second order in k)

$$
\begin{equation*}
f_{k}^{\mathrm{Born}}(\theta)=\frac{2 a^{3} m V_{0}}{3 \hbar^{2}}-\frac{4 a^{5} k^{2} m V_{0} \sin ^{2}\left(\frac{\theta}{2}\right)}{15 \hbar^{2}}+\mathcal{O}\left(k^{4}\right) . \tag{10}
\end{equation*}
$$

e) Compare the results of parts c) and d).

