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—EXERCISES—

6.1 Levinson’s Theorem

We want to deduce a relationship between bound states and phase shifts in the theory of elastic
scattering.

a) Consider a free system enclosed in a (large) sphere S? with radius R, i.e. , the wavefunction
vanishes outside the sphere S?. We can model such a system with a potential

V(r):{o r<R (1)

oo r>R.

Show that for large R, the number of states with angular momentum quantum number [
in the energy range 0 to E is given by:

ree kR -
N = [ v o) | ®
where |...| denotes the floor function. (2 Pts)

b) Now consider a potential V (r), which vanishes for  — oo at least as fast as r—2. Consider
now the theory with V(r) on a sphere S? of (large) radius R. ILe., consider the potential

{V(r) r<R

Vir) =
() 00 r>R.

(3)

Show that for large R, the number of states with angular momentum quantum number [
in the energy range 0 to E is given by:

kR+5[(E>—‘Sl(O)+O(R—1)J : (4)

7T s ™

Ng(E) = {

(1 Pt)

c¢) Conclude that the number of bound states, i.e., states with E < 0, with angular momen-
tum quantum number [ for the potential V' (r) is given by

Ni= 2 (5(0) — 6i(o0) - (5)

(2 Pts)
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d) Consider now a Hamiltonian for some potential V (r) that falls off as 7=2 as r — oo, such
that it has a continuum of particle states together with a number of discrete bound states
N; with angular momentum ! and with energy F < 0. Suppose we add an interaction,
which is given in terms of a local potential AV (r) (with AV(r) vanishing at least as
fast as =2 as r — o0), such that all discrete states become unstable and all continuum
states remain in a continuum. Determine the change in the phase shifts 0;(E) as the
energy is scanned from F = 0 to £ = oo and as we vary the interaction coupling A in
W(r)=V(r)+ X AV(r) from A=0to A = 1. (2 Pts)

6.2 Coulomb Scattering

In this exercise we want to solve the Schrodinger equation for the Coulomb potential

_ 212262
= . .

V(r) (6)

Here Zie is the charge of the scattered particle, Zse the charge of the scattering centre and r
the distance between them. The Schrodinger equation for such a potential becomes

h2 21Z2€2 h2]€2
A = 7
3, OV Ty =5 (7

with p being the reduced mass of the scattered particle.
a) Starting from the ansatz '
$(@) = ™ 1(r - 2) (8)
for the wavefunction, where z = rcos(6), show that the Schrodinger equation takes the
form

pIL (p) + (1 — ikp)IL (p) — k&II(p) =0, (9)
where p =7 — z and £ = %2;2“ (4 Pts)

b) We want to solve the second order differential equation (9), also known as the confluent
hypergeometric equation. For this purpose you can use Frobenius method, which is a
method to find power series solutions to second order differential equations.

Show that
W(Z) = Net™ | Fy(—i&; 1;ik(r — 2)) . (10)

Here

Fi(ascr) =) () 2 (11)

' )
= (¢)n n!
is the confluent hypergeometric function and (a), denotes the Pochhammer symbol,

n—1

(@n=[]ala+1)...(a+n—1) (with (a)o=1). (12)

m=0

(4 Pts)
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¢) The asymptotic behaviour of the confluent hypergeometric function for large complex
argument x is given by
I'(c)

I'(c—a)

I'(c)

(o) [+ 0] + s

1Fi(a;¢;2) — e(x)* [1+ (’)(a:fl)] . (13)

Here I'(z) denotes the Gamma function which is defined as
[e.e]
I'(z) = /d:n r*le™® (14)
0

for Re(z) > 0 and has the property I'(z + 1) = z I'(2).

Deduce the asymptotic behaviour of the wavefunction () from (13). In particular show
that it can be written as

Netr/2 oo etkr—i€ln(kr(1—cos 0))
— ikz+i&ln(kr(1—cosh)) 0 1
with ( 6 )
I'(1+13€) 22122671
0) =— 1
where ¢ = 2ksin(6/2). (2 Pts)
6.3 The Jacobi Identity
Given a commutation relation o )
Q4 Q" =i> & Q° (17)
between operators Q“ and Qb, prove the Jacobi identity
>~ (fhepde s ge g+ gleget) = o (18)
of the so-called structure constants fo. (3 Pts)



