Advanced Quantum Theory

Dr. Hans Jockers und Urmi Ninad

http://www.th.physik.uni-bonn.de/klemm/advancedqm/index.php
Due Date: Nov. 20th, 2019

-EXERCISES-

6.1 Levinson's Theorem

We want to deduce a relationship between bound states and phase shifts in the theory of elastic scattering.
a) Consider a free system enclosed in a (large) sphere S^{2} with radius R, i.e., the wavefunction vanishes outside the sphere S^{2}. We can model such a system with a potential

$$
V(r)= \begin{cases}0 & r<R \tag{1}\\ \infty & r \geq R .\end{cases}
$$

Show that for large R , the number of states with angular momentum quantum number l in the energy range 0 to E is given by:

$$
\begin{equation*}
N_{R, l}^{\mathrm{free}}(E)=\left\lfloor\frac{k R}{\pi}+\mathcal{O}\left(R^{-1}\right)\right\rfloor \tag{2}
\end{equation*}
$$

where $\lfloor\ldots\rfloor$ denotes the floor function.
b) Now consider a potential $V(r)$, which vanishes for $r \rightarrow \infty$ at least as fast as r^{-2}. Consider now the theory with $V(r)$ on a sphere S^{2} of (large) radius R. I.e., consider the potential

$$
V(r)= \begin{cases}V(r) & r<R \tag{3}\\ \infty & r \geq R\end{cases}
$$

Show that for large R, the number of states with angular momentum quantum number l in the energy range 0 to E is given by:

$$
\begin{equation*}
N_{R, l}(E)=\left\lfloor\frac{k R}{\pi}+\frac{\delta_{l}(E)}{\pi}-\frac{\delta_{l}(0)}{\pi}+\mathcal{O}\left(R^{-1}\right)\right\rfloor . \tag{4}
\end{equation*}
$$

c) Conclude that the number of bound states, i.e., states with $E<0$, with angular momentum quantum number l for the potential $V(r)$ is given by

$$
\begin{equation*}
N_{l}=\frac{1}{\pi}\left(\delta_{l}(0)-\delta_{l}(\infty)\right) \tag{5}
\end{equation*}
$$

d) Consider now a Hamiltonian for some potential $V(r)$ that falls off as r^{-2} as $r \rightarrow \infty$, such that it has a continuum of particle states together with a number of discrete bound states N_{l} with angular momentum l and with energy $E<0$. Suppose we add an interaction, which is given in terms of a local potential $\Delta V(r)$ (with $\Delta V(r)$ vanishing at least as fast as r^{-2} as $r \rightarrow \infty$), such that all discrete states become unstable and all continuum states remain in a continuum. Determine the change in the phase shifts $\delta_{l}(E)$ as the energy is scanned from $E=0$ to $E=\infty$ and as we vary the interaction coupling λ in $V_{\lambda}(r)=V(r)+\lambda \Delta V(r)$ from $\lambda=0$ to $\lambda=1$.

6.2 Coulomb Scattering

In this exercise we want to solve the Schrödinger equation for the Coulomb potential

$$
\begin{equation*}
V(r)=\frac{Z_{1} Z_{2} e^{2}}{r} \tag{6}
\end{equation*}
$$

Here $Z_{1} e$ is the charge of the scattered particle, $Z_{2} e$ the charge of the scattering centre and r the distance between them. The Schrödinger equation for such a potential becomes

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 \mu} \Delta \psi+\frac{Z_{1} Z_{2} e^{2}}{r} \psi=\frac{\hbar^{2} k^{2}}{2 \mu} \psi \tag{7}
\end{equation*}
$$

with μ being the reduced mass of the scattered particle.
a) Starting from the ansatz

$$
\begin{equation*}
\psi(\vec{x})=e^{i k z} \Pi(r-z) \tag{8}
\end{equation*}
$$

for the wavefunction, where $z=r \cos (\theta)$, show that the Schrödinger equation takes the form

$$
\begin{equation*}
\rho \Pi^{\prime \prime}(\rho)+(1-i k \rho) \Pi^{\prime}(\rho)-k \xi \Pi(\rho)=0, \tag{9}
\end{equation*}
$$

where $\rho=r-z$ and $\xi=\frac{Z_{1} Z_{2} e^{2} \mu}{\hbar^{2} k}$.
b) We want to solve the second order differential equation (9), also known as the confluent hypergeometric equation. For this purpose you can use Frobenius method, which is a method to find power series solutions to second order differential equations.
Show that

$$
\begin{equation*}
\psi(\vec{x})=N e^{i k z}{ }_{1} F_{1}(-i \xi ; 1 ; i k(r-z)) . \tag{10}
\end{equation*}
$$

Here

$$
\begin{equation*}
{ }_{1} F_{1}(a ; c ; x)=\sum_{n=0}^{\infty} \frac{(a)_{n} x^{n}}{(c)_{n} n!}, \tag{11}
\end{equation*}
$$

is the confluent hypergeometric function and $(a)_{n}$ denotes the Pochhammer symbol,

$$
\begin{equation*}
(a)_{n}=\prod_{m=0}^{n-1} a(a+1) \ldots(a+n-1) \quad\left(\text { with }(a)_{0}=1\right) \tag{12}
\end{equation*}
$$

c) The asymptotic behaviour of the confluent hypergeometric function for large complex argument x is given by

$$
\begin{equation*}
{ }_{1} F_{1}(a ; c ; x) \rightarrow \frac{\Gamma(c)}{\Gamma(c-a)}(-x)^{-a}\left[1+\mathcal{O}\left(x^{-1}\right)\right]+\frac{\Gamma(c)}{\Gamma(a)} e^{x}(x)^{a-c}\left[1+\mathcal{O}\left(x^{-1}\right)\right] . \tag{13}
\end{equation*}
$$

Here $\Gamma(z)$ denotes the Gamma function which is defined as

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} d x x^{z-1} e^{-x} \tag{14}
\end{equation*}
$$

for $\operatorname{Re}(z)>0$ and has the property $\Gamma(z+1)=z \Gamma(z)$.
Deduce the asymptotic behaviour of the wavefunction $\psi(\vec{x})$ from (13). In particular show that it can be written as

$$
\begin{equation*}
\psi(\vec{x}) \rightarrow \frac{N e^{\xi \pi / 2}}{\Gamma(1+i \xi)}\left[e^{i k z+i \xi \ln (k r(1-\cos \theta))}+f_{k}(\theta) \frac{e^{i k r-i \xi \ln (k r(1-\cos \theta))}}{r}\right] \tag{15}
\end{equation*}
$$

with

$$
\begin{equation*}
f_{k}(\theta)=-\frac{\Gamma(1+i \xi)}{\Gamma(1-i \xi)} \frac{2 Z_{1} Z_{2} e^{2} \mu}{\hbar^{2} q^{2}} \tag{16}
\end{equation*}
$$

where $q=2 k \sin (\theta / 2)$.

6.3 The Jacobi Identity

Given a commutation relation

$$
\begin{equation*}
\left[\hat{Q}^{a}, \hat{Q}^{b}\right]=i \sum_{c} f_{c}^{a b} \hat{Q}^{c} \tag{17}
\end{equation*}
$$

between operators \hat{Q}^{a} and \hat{Q}^{b}, prove the Jacobi identity

$$
\begin{equation*}
\sum_{c}\left(f_{a}^{b c} f_{c}^{d e}+f_{a}^{e c} f_{c}^{b d}+f_{a}^{d c} f_{c}^{e b}\right)=0 \tag{18}
\end{equation*}
$$

of the so-called structure constants $f_{c}^{a b}$.

