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–Exercises–

6.1 Levinson’s Theorem

We want to deduce a relationship between bound states and phase shifts in the theory of elastic
scattering.

a) Consider a free system enclosed in a (large) sphere S2 with radius R, i.e. , the wavefunction
vanishes outside the sphere S2. We can model such a system with a potential

V (r) =

{
0 r < R

∞ r ≥ R .
(1)

Show that for large R, the number of states with angular momentum quantum number l
in the energy range 0 to E is given by:

N free
R,l (E) =

⌊
kR

π
+O(R−1)

⌋
, (2)

where b. . .c denotes the floor function. (2 Pts)

b) Now consider a potential V (r), which vanishes for r →∞ at least as fast as r−2. Consider
now the theory with V (r) on a sphere S2 of (large) radius R. I.e., consider the potential

V (r) =

{
V (r) r < R

∞ r ≥ R .
(3)

Show that for large R, the number of states with angular momentum quantum number l
in the energy range 0 to E is given by:

NR,l(E) =

⌊
kR

π
+
δl(E)

π
− δl(0)

π
+O(R−1)

⌋
. (4)

(1 Pt)

c) Conclude that the number of bound states, i.e., states with E < 0, with angular momen-
tum quantum number l for the potential V (r) is given by

Nl =
1

π
(δl(0)− δl(∞)) . (5)

(2 Pts)
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d) Consider now a Hamiltonian for some potential V (r) that falls off as r−2 as r →∞, such
that it has a continuum of particle states together with a number of discrete bound states
Nl with angular momentum l and with energy E < 0. Suppose we add an interaction,
which is given in terms of a local potential ∆V (r) (with ∆V (r) vanishing at least as
fast as r−2 as r → ∞), such that all discrete states become unstable and all continuum
states remain in a continuum. Determine the change in the phase shifts δl(E) as the
energy is scanned from E = 0 to E = ∞ and as we vary the interaction coupling λ in
Vλ(r) = V (r) + λ ∆V (r) from λ = 0 to λ = 1. (2 Pts)

6.2 Coulomb Scattering

In this exercise we want to solve the Schrödinger equation for the Coulomb potential

V (r) =
Z1Z2e

2

r
. (6)

Here Z1e is the charge of the scattered particle, Z2e the charge of the scattering centre and r
the distance between them. The Schrödinger equation for such a potential becomes

− ~2

2µ
∆ψ +

Z1Z2e
2

r
ψ =

~2k2

2µ
ψ (7)

with µ being the reduced mass of the scattered particle.

a) Starting from the ansatz
ψ(~x) = eikz Π(r − z) (8)

for the wavefunction, where z = r cos(θ), show that the Schrödinger equation takes the
form

ρΠ
′′
(ρ) + (1− ikρ)Π

′
(ρ)− kξΠ(ρ) = 0 , (9)

where ρ = r − z and ξ = Z1Z2e2µ
~2k . (4 Pts)

b) We want to solve the second order differential equation (9), also known as the confluent
hypergeometric equation. For this purpose you can use Frobenius method, which is a
method to find power series solutions to second order differential equations.

Show that
ψ(~x) = Neikz 1F1(−iξ; 1; ik(r − z)) . (10)

Here

1F1(a; c;x) =
∞∑
n=0

(a)n x
n

(c)n n!
, (11)

is the confluent hypergeometric function and (a)n denotes the Pochhammer symbol,

(a)n =
n−1∏
m=0

a(a+ 1) . . . (a+ n− 1) (with (a)0 = 1) . (12)

(4 Pts)
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c) The asymptotic behaviour of the confluent hypergeometric function for large complex
argument x is given by

1F1(a; c;x)→ Γ(c)

Γ(c− a)
(−x)−a

[
1 +O(x−1)

]
+

Γ(c)

Γ(a)
ex(x)a−c

[
1 +O(x−1)

]
. (13)

Here Γ(z) denotes the Gamma function which is defined as

Γ(z) =

∞∫
0

dx xz−1e−x (14)

for Re(z) > 0 and has the property Γ(z + 1) = z Γ(z).

Deduce the asymptotic behaviour of the wavefunction ψ(~x) from (13). In particular show
that it can be written as

ψ(~x)→ Neξπ/2

Γ(1 + iξ)

[
eikz+iξln(kr(1−cos θ)) + fk(θ)

eikr−iξln(kr(1−cos θ))

r

]
, (15)

with

fk(θ) = −Γ(1 + iξ)

Γ(1− iξ)
2Z1Z2e

2µ

~2q2
, (16)

where q = 2k sin(θ/2). (2 Pts)

6.3 The Jacobi Identity

Given a commutation relation
[Q̂a, Q̂b] = i

∑
c

fabc Q̂c (17)

between operators Q̂a and Q̂b, prove the Jacobi identity∑
c

(
f bca f

de
c + feca f

bd
c + fdca f

eb
c

)
= 0 (18)

of the so-called structure constants fabc . (3 Pts)
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