Exercise Sheet 7 Nov. 20th, 2019 WS 2019/2020

Advanced Quantum Theory

Dr. Hans Jockers und Urmi Ninad

http://www.th.physik.uni-bonn.de/klemm/advancedqm/index.php

Due Date: Nov. 27th, 2019

-Exercises-

7.1 The 1d Translation Group

Consider the Hilbert space \mathcal{H} of square-integrable functions $\psi : \mathbb{R} \to \mathbb{C}$ with the inner product

$$\langle \psi | \phi \rangle = \int dx \ \psi^*(x) \ \phi(x) \ . \tag{1}$$

We consider the additive group of real numbers $(\mathbb{R}, +)$, which is the group of 1d translations. Each group element x_0 acts on the Hilbert space \mathcal{H} with the operator

$$\begin{aligned}
\mathcal{U}(x_0) &: \ \mathcal{H} \to \mathcal{H} \\
\psi(x) \mapsto \psi(x - x_0) .
\end{aligned}$$
(2)

- a) Show that \mathcal{U} is a (non-projective) unitary representation acting on \mathcal{H} . (2 Pts)
- b) Determine the symmetry generator of the action of the translation group on \mathcal{H} . (2 Pts)

7.2 Rotations in a Plane

a) Consider the Lie group $SO(2) = \{A \in Mat(2, \mathbb{R}) | A^T A = 1, det(A) = 1\}$. Determine the manifold of the Lie group SO(2).

<u>*Hint:*</u> Parameterise the group elements of SO(2) with suitable matrix elements and deduce the space described by these parameters. (3 Pts)

- b) Parameterise the elements of the Lie group SO(2) in terms of an angular coordinate θ . (1 Pt)
- c) Consider a one-dimensional Hilbert space $\mathcal{H} \simeq \mathbb{C}$. Classify all one-dimensional non-projective unitary representations, and show that each representation is labelled by an integer.

<u>*Remark:*</u> In physics these integers correspond to, for instance, electric charges. The SO(2) symmetry underlying electromagnetism is ultimately the reason for the quantisation of electric charges in nature. (3 Pts)

7.3 Projective Representations

Consider a two-dimensional Hilbert space $\mathcal{H} = \mathbb{C}^2$ with the standard inner product upon which the operators $\mathcal{U}(\theta_1, \theta_2, \theta_3)$ act, where

$$\mathcal{U}(\theta_1, \theta_2, \theta_3) = e^{-i\pi/4} \begin{pmatrix} \frac{1}{\sqrt{2}} \left(\cos\left(\frac{\theta_1 - \theta_2}{2}\right) + i\cos\left(\frac{\theta_1 + \theta_2}{2}\right) \right) & \frac{1}{\sqrt{2}} e^{i\theta_3} \left(\sin\left(\frac{\theta_1 - \theta_2}{2}\right) - i\sin\left(\frac{\theta_1 + \theta_2}{2}\right) \right) \\ \frac{1}{\sqrt{2}} \left(\sin\left(\frac{\theta_1 + \theta_2}{2}\right) - i\sin\left(\frac{\theta_1 - \theta_2}{2}\right) \right) & \frac{1}{\sqrt{2}} e^{i\theta_3} \left(\cos\left(\frac{\theta_1 + \theta_2}{2}\right) + i\cos\left(\frac{\theta_1 - \theta_2}{2}\right) \right) \end{pmatrix}.$$

- a) Show that $\mathcal{U}(\theta_1, \theta_2, \theta_3)$ is a unitary matrix with $\mathcal{U}(0, 0, 0) = \hat{\mathbb{1}}$. (2 Pts)
- b) Assuming that $\mathcal{U}(\theta_1, \theta_2, \theta_3)$ paramterises a representation of a Lie group in the vicinity of the identity, compute the commutator relations of the symmetry generators. (4 Pts)
- c) Argue that the representation of \mathcal{U} is projective. Redefine the symmetry generators and the unitary matrices in such a way that the representation $\tilde{\mathcal{U}}$ and its symmetry generators give rise to a non-projective unitary representation. (3 Pts)