Advanced Quantum Theory

Dr. Hans Jockers und Urmi Ninad
http://www.th.physik.uni-bonn.de/klemm/advancedqm/index.php
Due Date: Dec. 5th, 2019

-Exercises-

Attention: Please submit the solutions to sheet 8 and pick up sheet 9 on Thursday 5.12.2019 by 12:00 from the desk outside office 2.010 , BCTP, 2nd floor, PI.

8.1 Symmetry Generators of the Galileo Group in 3d

Consider the Galileo group $\operatorname{Gal}(3)$ in 3 dimensions. Let $S \in \operatorname{Gal}(3)$ with the action on the coordinates (\vec{x}, t)

$$
\begin{equation*}
S(R, \vec{v}, \vec{s}, \tau):(\vec{x}, t) \longmapsto\left(\vec{x}^{\prime}, t^{\prime}\right)=(R \vec{x}-\vec{v} t-\vec{s}, t-\tau), \tag{1}
\end{equation*}
$$

with $R^{T}=R^{-1}$. In the lecture we derived the commutation relations

$$
\begin{align*}
& U\left(S^{\prime}\right) \cdot \hat{J}_{i j} \cdot U\left(S^{\prime}\right)^{-1}=\sum_{k, l}\left(\hat{J}_{k l}+v_{k}^{\prime} \hat{K}_{l}-v_{l}^{\prime} \hat{K}_{k}+\left(s_{k}^{\prime}+v_{k}^{\prime} \tau^{\prime}\right) \hat{P}_{l}-\left(s_{l}^{\prime}+v_{l}^{\prime} \tau^{\prime}\right) \hat{P}_{k}\right) R_{k i}^{\prime} R_{l j}^{\prime}, \\
& U\left(S^{\prime}\right) \cdot \hat{K}_{i} \cdot U\left(S^{\prime}\right)^{-1}=\sum_{k}\left(\hat{K}_{k}+\tau^{\prime} \hat{P}_{k}\right) R_{k i}^{\prime}, \tag{2}\\
& U\left(S^{\prime}\right) \cdot \hat{P}_{i} \cdot U\left(S^{\prime}\right)^{-1}=\sum_{k} \hat{P}_{k} R_{k i}^{\prime}, \\
& U\left(S^{\prime}\right) \cdot \hat{H} \cdot U\left(S^{\prime}\right)^{-1}=\hat{H}+\sum_{k} v_{k}^{\prime} \hat{P}_{k},
\end{align*}
$$

where $\hat{J}_{i j}, \hat{K}_{i}, \hat{P}_{i}, \hat{H}$ are the generators for an infinitesimal unitary transformation, i.e.,

$$
\begin{equation*}
U\left(\omega_{i j}, v_{i}, s_{i}, \tau\right)=\mathbb{1}-\frac{i}{2 \hbar} \sum_{i, j} \omega_{i j} \hat{J}_{i j}+\frac{i}{\hbar} \sum_{i} v_{i} \hat{K}_{i}+\frac{i}{\hbar} \sum_{i} s_{i} \hat{P}_{i}-\frac{i}{\hbar} \tau \hat{H} . \tag{3}
\end{equation*}
$$

a) For $S(R, \vec{v}, \vec{s}, \tau) \in \operatorname{Gal}(3)$ show that

$$
\begin{equation*}
S(R, \vec{v}, \vec{s}, \tau)^{-1}=S\left(R^{-1},-R^{-1} \vec{v},-R^{-1}(\vec{s}+\vec{v} t),-\tau\right) . \tag{4}
\end{equation*}
$$

State the infinitesimal inverse transformation.
b) Derive from (2), by inserting for S^{\prime} an infinitesimal group element, the commutation
relations

$$
\begin{array}{ll}
{\left[\hat{J}_{i}, \hat{J}_{j}\right]=i \hbar \sum_{k} \epsilon_{i j k} \hat{J}_{k},} & {\left[\hat{P}_{i}, \hat{P}_{j}\right]=0} \\
{\left[\hat{J}_{i}, \hat{K}_{j}\right]=i \hbar \sum_{k} \epsilon_{i j k} \hat{K}_{k},} & {\left[\hat{K}_{i}, \hat{K}_{j}\right]=0} \\
{\left[\hat{J}_{i}, \hat{P}_{j}\right]=i \hbar \sum_{k} \epsilon_{i j k} \hat{P}_{k},} & {\left[\hat{K}_{i}, \hat{P}_{j}\right]=0} \\
{\left[\hat{J}_{i}, \hat{H}\right]=0,} & {\left[\hat{P}_{i}, \hat{H}\right]=0} \\
& {\left[\hat{K}_{i}, \hat{H}\right]=-i \hbar \hat{P}_{i}} \tag{6Pts}
\end{array}
$$

where $\hat{J}_{i j}=\sum_{k} \epsilon_{i j k} \hat{J}_{k}$.
c) We want to extend the commutation relations by central extensions, eg.,

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \hbar \sum_{k} \epsilon_{i j k} J_{k}+i \hbar c_{i j}^{(J J)} \cdot \hat{\mathbb{1}} . \tag{6}
\end{equation*}
$$

Show that only the central extensions $c_{[i j]}^{(J J)}, c_{[i j]}^{(J P)}, c_{[i j]}^{(J K)}, c_{i}^{(K H)}$ and $c_{i j}^{(K P)}=c^{(K P)} \cdot \delta_{i j}$ are compatible with the Jacobi identity. Here $T_{[i j]}$ denotes the antisymmetric part of the tensor $T_{i j}$. Furthermore, use the Jacobi identity between $\hat{J}, \hat{K}, \hat{H}$ to derive a relation between $c^{(J P)}$ and $c^{(K H)}$.
$(3+5$ (Bonus) Pts)
d) Find a redefinition of the generators J_{i}, P_{i}, K_{i} such that all the central charges vanish except for $c_{i j}^{(K P)}$. Argue that the central extension $c_{i j}^{(K P)}$ cannot be removed by a redefinition of operators.

8.2 The 1d Galileo Group Gal(1) and the free particle

Consider a free particle in 1d with the Hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{1}{2 m} \hat{P}^{2} \tag{7}
\end{equation*}
$$

In the lecture we derived for the boost generators the operator

$$
\begin{equation*}
\hat{K}=t \hat{P}-m \hat{x} . \tag{8}
\end{equation*}
$$

a) Consider the transformed wave function

$$
\begin{equation*}
\psi^{\prime}(t, x)=\exp \left(\frac{i}{\hbar} v \hat{K}\right) \psi(t, x) . \tag{9}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\psi^{\prime}(t, x)=\exp \left(-\frac{i}{\hbar} m\left(\frac{1}{2} t v^{2}+v x\right)\right) \psi(t, x+v t) . \tag{10}
\end{equation*}
$$

b) Let $\psi(t, x)$ be a physical wave function, i.e., $\psi(t, x)$ fulfils the 1 d (free) Schrödinger equation, then show that the transformed wave function $\psi^{\prime}(t, x)$ also fulfils the Schrödinger equation.

