Advanced Quantum Theory

Dr. Hans Jockers und Urmi Ninad

http://www.th.physik.uni-bonn.de/klemm/advancedqm/index.php
Due Date: Dec. 11th, 2019

-ExERCISES-

9.1 The Lorentz Group in 4d

In this exercise we want to derive the commutation relations of the Lorentz group $\mathrm{SO}(1,3)$. We use the convention $\eta=(-,+,+,+)$ for the metric tensor. For $S \in \operatorname{SO}(1,3)$,

$$
\begin{equation*}
S(\Lambda): x^{\mu} \mapsto x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu} \tag{1}
\end{equation*}
$$

and the infinitesimal unitary transformation is given by

$$
\begin{equation*}
U\left(\omega_{\mu \nu}\right)=\mathbb{1}-\frac{i}{2 \hbar} \omega_{\mu \nu} M^{\mu \nu} \tag{2}
\end{equation*}
$$

a) State the composition law, the inverse element and the infinitesimal inverse transformation of the Lorentz group.
b) Compute the operator $U\left(S^{\prime}\right) U\left(\omega_{\mu \nu}\right) U\left(S^{\prime}\right)^{-1}$ for infinitesimal S^{\prime} by considering the infinitesimal transformation corresponding to the element $S^{\prime} \cdot S(\mathbb{1}-\omega) \cdot S^{\prime-1} \in \mathrm{SO}(1,3)$. By comparing the coefficients of ω show that

$$
\begin{equation*}
\left[M^{\mu \nu}, M^{\rho \sigma}\right]=-i \hbar\left(\eta^{\nu \rho} M^{\mu \sigma}+\eta^{\mu \sigma} M^{\nu \rho}-\eta^{\mu \rho} M^{\nu \sigma}-\eta^{\nu \sigma} M^{\mu \rho}\right) \tag{3}
\end{equation*}
$$

c) Define the rotations $J^{i j}:=M^{i j}$ and boosts $K^{i}:=M^{0 i}$ for $i, j=\{1,2,3\}$ and state their commutation relations. Compare with the commutation relations of the rotations and boosts in the Galileo algebra.

9.2 Spin vs. Special Orthogonal Group

We want to show that the spin group $\operatorname{Spin}(3) \simeq \operatorname{SU}(2)$ is a double cover of the special orthogonal group $\mathrm{SO}(3)$.
a) Consider the space of traceless hermitian 2×2 matrices $H_{2 \times 2}$. Show that any traceless hermitian 2×2 matrix h can be written as

$$
\begin{equation*}
h(\vec{x})=\vec{\sigma} \cdot \vec{x}=\sum_{i} \sigma_{i} x_{i} \quad, \text { with } \quad \vec{x} \in \mathbb{R}^{3} \tag{4}
\end{equation*}
$$

and compute the determinant of $h(\vec{x})$.
b) Argue that the group $\mathrm{SU}(2)$ acts on $H_{2 \times 2}$ by conjugation, i.e., $u \in \mathrm{SU}(2)$ yields a map

$$
\begin{equation*}
\varphi_{u}: H_{2 \times 2} \rightarrow H_{2 \times 2}, h \mapsto u \cdot h \cdot u^{-1}, \tag{5}
\end{equation*}
$$

which is well defined. In other words, show that the conjugation map φ_{u} preserves the defining properties of $H_{2 \times 2}$.
c) Compute for a general matrix $u \in \mathrm{SU}(2)$ a matrix R_{u} such that

$$
\begin{equation*}
u(\vec{\sigma} \cdot \vec{x}) u^{-1}=\vec{\sigma} \cdot\left(R_{u} \vec{x}\right) \tag{6}
\end{equation*}
$$

Show that the computed R_{u} is a group element of $\mathrm{SO}(3)$.
Hint: First demonstrate that $R_{u} \in \mathrm{O}(3)$ and then by observing that $R_{\mathbb{1}_{2 \times 2}}=\mathbb{1}_{3 \times 3}$, argue that $\operatorname{det}\left(R_{u}\right)=1$ for any $u \in \mathrm{SO}(3)$. (If you are bored you can also compute the determinant directly, however it is not advised).
d) Finally show that the constructed map

$$
\begin{equation*}
\rho: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3) ; u \mapsto R_{u} \tag{7}
\end{equation*}
$$

is 2 -to- 1 .

9.3 The Lagrangian Density of Electrodynamics

In this exercise we want to derive the Maxwell's equation from the Lagrangian density of electrodynamics. We use the convention $\eta=(-,+,+,+)$ for the metric tensor. The action of electrodynamics is given by

$$
\begin{equation*}
S=\int d^{4} x \mathcal{L}=\int d^{4} x\left(-\frac{1}{4 \mu_{0}} F_{\mu \nu} F^{\mu \nu}+j^{\mu} A_{\mu}\right) \tag{8}
\end{equation*}
$$

with the Lagrangian density \mathcal{L}. Here μ_{0} is the vacuum permeability. The electromagnetic tensor $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is defined as

$$
\left(\begin{array}{cccc}
0 & -E_{x} / c & -E_{y} / c & -E_{z} / c \tag{9}\\
E_{x} / c & 0 & B_{z} & -B_{y} \\
E_{y} / c & -B_{z} & 0 & B_{x} \\
E_{z} / c & B_{y} & -B_{x} & 0
\end{array}\right)
$$

where c is the speed of light and \vec{E}, \vec{B} are the electric and magnetic fields, respectively. The four-current is given by $j^{\mu}=(c \rho, \vec{J})$ where ρ is the charge density and \vec{J} is current density.
a) Solve the Euler-Lagrange equation for the electromagnetic Lagrangian density to arrive at the Maxwell's equations

$$
\begin{equation*}
\nabla \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} \quad, \quad \nabla \times \vec{B}=\mu_{0} \vec{J}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t} \tag{10}
\end{equation*}
$$

where ϵ_{0} is the vacuum permittivity. Note $\mu_{0} \epsilon_{0}=1 / c^{2}$.
b) Prove the Bianchi identity for the electromagnetic tensor

$$
\begin{equation*}
\partial_{\alpha} F_{\beta \gamma}+\partial_{\beta} F_{\gamma \alpha}+\partial_{\gamma} F_{\alpha \beta}=0 \tag{11}
\end{equation*}
$$

to arrive at the other two Maxwell's equations

$$
\begin{equation*}
\nabla \cdot \vec{B}=0 \quad, \quad \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \tag{12}
\end{equation*}
$$

