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1 Derivation of the energy momentum tensor

In this exercise you will derive the energy momentum tensor appearing in the Noether theorem.
Consider a scalar field φ and the Lagrangian L(φ, ∂µφ, x

µ). The action will be

S =

∫
R

d4xL(φ, ∂µφ, x
µ) (1.1)

with arbitrary volume R.

1. To start, we want to see what variations of x and φ will look like.

xµ → x′
µ

= xµ + δxµ (1.2)

φ(xµ)→ φ′(xµ) = φ(xµ) + δφ(xµ) (1.3)

Now we want to compute the total variation in φ. Hence we need to think about the variation
of

φ→ φ′(x′) = φ(x) + ∆φ(x) . (1.4)

What is ∆φ(x) to first order in δ?

Hint: f(xν + δxν) = f(xν) + δxµ∂µf(xν) + · · ·

2. The next step is to compute δS. Which will be

δS =

∫
R

d4x′ L(φ′, ∂µφ
′, x′

µ
)−

∫
R

d4xL(φ, ∂µφ, x
µ) . (1.5)

We want rewrite the first integral in terms of xµ and φ. In order to do this we now need to
compute the Jacobian of the change of variables xµ → x′µ.

d4x′ → Jd4x where J = det

(
∂x′µ

∂xλ

)
= 1 + ∂µ(δxµ) . (1.6)

Plug this in, compute the variations and keep only terms up to first order in δ.

3. Write down δS so that δφ and δxµ are factored out. To do this you have to use partial
integration, which will give you a term containing a total derivative.

4. The total derivative can be changed into a surface term by using∫
R
∂µ (· · · ) d4x =

∫
∂R

(· · · )dσµ . (1.7)

Having this ready you are able to derive the Euler-Lagrange equation. What are the necessary
conditions?
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5. From now on we do not use these conditions on δφ and δxµ anymore and further analyze δS.

After writing the total derivative as a surface term you should be able to put the result into
the following form ∫

∂R

[
∂L

∂(∂µφ)
∆φ− Tµν δxν

]
dσµ . (1.8)

What is the explicit form of Tµν ? Tµν is called the energy-momentum tensor.

6. Let us now consider transformations on xµ and φ which let the action S invariant and can
be written infinitesimally as

∆xµ = δxµ = Xµ
ν δω

ν (1.9)

∆φ = Φµδω
µ . (1.10)

There may be more general transformations with more parameters.

Assuming that these obey the Euler-Lagrange equation, we find

δS =

∫
∂R

[
∂L

∂(∂µφ)
Φν − TµκXκ

ν

]
δωνdσµ = 0 . (1.11)

Check this! This suggests the definition of

Jµν =
∂L

∂(∂µφ)
Φν − TµκXκ

ν . (1.12)

The variation δων is arbitrary, therefore∫
∂R
Jµν dσµ = 0 (1.13)

holds. Use (1.7) to rewrite this as a total derivative. Argue now that ∂µJ
µ
ν = 0.

Homework

2 Maxwell equations 5 points

The quantities used here were defined on the last exercise sheet.

1. What is the definition of the field strength tensor Fµν , known from electrodynamics, in terms
of Aµ? What is the unit of Aµ in natural units?

2. Now consider the action

S =

∫
d4x

(
−1

4
FµνF

µν + JµA
µ

)
(2.1)

and derive the Maxwell equations from this, using the Euler-Lagrange equation.
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Hints:

• Here, every component Aµ is a field for which you have to solve the Euler Lagrange
equation!

• Additionally, you should keep in mind the index structure, when taking the derivative
with respect to Aµ. You might have to lower some indices!

• This means also to think about if ∂L
∂(∂µAκ)

has an upper or lower index µ and κ.

3. Compare this to exercise 2 of the last exercise sheet.

3 Energy-momentum tensor of electrodynamics 5 points

1. Compute the energy-momentum tensor for

S =

∫
d4x

(
−1

4
FµνF

µν

)
. (3.1)

2. The resulting energy momentum tensor Tµν is not symmetric in µ and ν. In order to sym-
metrize it, add

∂λK
λµν = ∂λ(FµλAν) (3.2)

to it. Show that that it is symmetric now. Why are you allowed to add this?

3. Rewrite the new Tµν in a manner so that it corresponds to equation (6.1) on the last exercise
sheet.
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