Physikalisches Institut	ST 2012
Universität Bonn	13.4.2012
Theoretische Physik	Exercise 2

Exercises General Relativity and Cosmology Prof. Dr. Albrecht Klemm

1 Derivation of the energy momentum tensor

In this exercise you will derive the energy momentum tensor appearing in the Noether theorem. Consider a scalar field ϕ and the Lagrangian $\mathcal{L}(\phi, \partial_{\mu}\phi, x^{\mu})$. The action will be

$$S = \int_{R} \mathrm{d}^{4} x \mathcal{L}(\phi, \partial_{\mu} \phi, x^{\mu}) \tag{1.1}$$

with arbitrary volume R.

1. To start, we want to see what variations of x and ϕ will look like.

$$x^{\mu} \to x^{\prime \mu} = x^{\mu} + \delta x^{\mu} \tag{1.2}$$

$$\phi(x^{\mu}) \to \phi'(x^{\mu}) = \phi(x^{\mu}) + \delta\phi(x^{\mu}) \tag{1.3}$$

Now we want to compute the total variation in ϕ . Hence we need to think about the variation of

$$\phi \to \phi'(x') = \phi(x) + \Delta \phi(x) \,. \tag{1.4}$$

What is $\Delta \phi(x)$ to first order in δ ?

Hint: $f(x^{\nu} + \delta x^{\nu}) = f(x^{\nu}) + \delta x^{\mu} \partial_{\mu} f(x^{\nu}) + \cdots$

2. The next step is to compute δS . Which will be

$$\delta S = \int_R \mathrm{d}^4 x' \,\mathcal{L}(\phi', \partial_\mu \phi', x'^\mu) - \int_R \mathrm{d}^4 x \,\mathcal{L}(\phi, \partial_\mu \phi, x^\mu) \,. \tag{1.5}$$

We want rewrite the first integral in terms of x^{μ} and ϕ . In order to do this we now need to compute the Jacobian of the change of variables $x^{\mu} \to x'^{\mu}$.

$$d^4x' \to J d^4x \quad \text{where} \quad J = \det\left(\frac{\partial x'^{\mu}}{\partial x^{\lambda}}\right) = 1 + \partial_{\mu}(\delta x^{\mu}).$$
 (1.6)

Plug this in, compute the variations and keep only terms up to first order in δ .

- 3. Write down δS so that $\delta \phi$ and δx^{μ} are factored out. To do this you have to use partial integration, which will give you a term containing a total derivative.
- 4. The total derivative can be changed into a surface term by using

$$\int_{R} \partial_{\mu} (\cdots) d^{4}x = \int_{\partial R} (\cdots) d\sigma_{\mu}.$$
(1.7)

Having this ready you are able to derive the Euler-Lagrange equation. What are the necessary conditions?

5. From now on we do not use these conditions on $\delta\phi$ and δx^{μ} anymore and further analyze δS . After writing the total derivative as a surface term you should be able to put the result into the following form

$$\int_{\partial R} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \Delta \phi - T^{\mu}_{\nu} \delta x^{\nu} \right] \mathrm{d}\sigma_{\mu} \,. \tag{1.8}$$

What is the explicit form of T^{μ}_{ν} ? T^{μ}_{ν} is called the energy-momentum tensor.

6. Let us now consider transformations on x^{μ} and ϕ which let the action S invariant and can be written infinitesimally as

$$\Delta x^{\mu} = \delta x^{\mu} = X^{\mu}_{\nu} \delta \omega^{\nu} \tag{1.9}$$

$$\Delta \phi = \Phi_{\mu} \delta \omega^{\mu} \,. \tag{1.10}$$

There may be more general transformations with more parameters.

Assuming that these obey the Euler-Lagrange equation, we find

$$\delta S = \int_{\partial R} \left[\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \Phi_{\nu} - T^{\mu}_{\kappa} X^{\kappa}_{\nu} \right] \delta \omega^{\nu} \mathrm{d}\sigma_{\mu} = 0.$$
 (1.11)

Check this! This suggests the definition of

$$J^{\mu}_{\nu} = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \Phi_{\nu} - T^{\mu}_{\kappa} X^{\kappa}_{\nu} \,. \tag{1.12}$$

The variation $\delta \omega^{\nu}$ is arbitrary, therefore

$$\int_{\partial R} J^{\mu}_{\nu} \mathrm{d}\sigma_{\mu} = 0 \tag{1.13}$$

holds. Use (1.7) to rewrite this as a total derivative. Argue now that $\partial_{\mu}J^{\mu}_{\nu} = 0$.

Homework

2 Maxwell equations

The quantities used here were defined on the last exercise sheet.

- 1. What is the definition of the field strength tensor $F_{\mu\nu}$, known from electrodynamics, in terms of A_{μ} ? What is the unit of A_{μ} in natural units?
- 2. Now consider the action

$$S = \int d^4x \, \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + J_{\mu} A^{\mu} \right)$$
(2.1)

and derive the Maxwell equations from this, using the Euler-Lagrange equation.

5 points

Hints:

- Here, every component A_{μ} is a field for which you have to solve the Euler Lagrange equation!
- Additionally, you should keep in mind the index structure, when taking the derivative with respect to A_{μ} . You might have to lower some indices!
- This means also to think about if $\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}A_{\kappa})}$ has an upper or lower index μ and κ .
- 3. Compare this to exercise 2 of the last exercise sheet.

3 Energy-momentum tensor of electrodynamics 5 points

1. Compute the energy-momentum tensor for

$$S = \int \mathrm{d}^4 x \, \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right) \,. \tag{3.1}$$

2. The resulting energy momentum tensor $T_{\mu\nu}$ is not symmetric in μ and ν . In order to symmetrize it, add

$$\partial_{\lambda}K^{\lambda\mu\nu} = \partial_{\lambda}(F^{\mu\lambda}A^{\nu}) \tag{3.2}$$

to it. Show that it is symmetric now. Why are you allowed to add this?

3. Rewrite the new $T_{\mu\nu}$ in a manner so that it corresponds to equation (6.1) on the last exercise sheet.