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1 Charts for S2
2 points

1. Use the defining equation
x2 + y2 + z2 = 1 (1.1)

to construct open charts for S2. Give the transition functions and check that they are smooth.

Hint: The idea is clearly to use the square-root function. However, note that you need more
than two charts!

2. The projective space. Here we explore another example of a manifold, namely CP 1. This is
defined as the space of all lines in C2 that pass through the origin. Note that we refer here
to a complex line, i.e. a copy of C. We denote an element of CP 1 by

[z1 : z2] =
{

(z1, z2) 6= (0, 0)|z1, z2 ∈ C
}
/ ∼ . (1.2)

Here we have denoted the equivalence relation ∼ by

(z1, z2) ∼ (w1, w2)⇔ ∃λ ∈ C∗s.t.(z1, z2) = λ(w1, w2) (1.3)

• Show that each element in CP 1 can be represented as either [1 : a] or as [b : 1] .
• For the moment we restrict to a real picture. Consider R2 and draw the lines x = 1

as well as y = 1 (Note that these lines are no elements of the projective space!). How
can these lines be identified with the representatives from the previous task? How many
lines are there that do not pass through x = 1 respectively y = 1?
• Conclude that we can endow CP 1 with two charts both being isomorphic to C. Show

that the transition function is given by

ϕ : C∗ → C∗, z1 7→ z2 = z−1
1 . (1.4)

Here zi denotes the coordinate on the respective copy of C.

3. Show that CP 1 is diffeomorphic to S2. To do so you may use the charts that are provided by
the stereographic projection.

Hint: The charts for the stereographic projection are constructed in Carroll and may be used
without deriving them again.
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2 Pull-back und push-forward 1 point

We consider two smooth manifolds M , N of dimension m and n respectively, as well as a smooth
map

Φ : M → N. (2.1)

Consider two charts given by maps1

x, y : M −→ Rn. (2.2)

Recall that a tangent vector(field) v acts on a function f : M −→ R as

v(f) = vi
∂(f ◦ x−1)

∂xi
. (2.3)

In addition, the map Φ induces a map (push-forward) of the respective tangent spaces

Φ∗ : TM → TN, Φ∗(v)f = v(f ◦ Φ) (2.4)

This can be used to pull-back a contravariant vector ω ∈ T ∗N by setting

Φ∗ω(v) = ω(Φ∗v) (2.5)

Express the change of coordinates, as well as the push-forward and the pull-back in local coordinates.
How do the transformations for general tensor fields read? What property does the map Φ in this
case have to have?

3 Pseudo-Riemannian metrics 1 point

Given a manifold M with a Riemannian metric g. Given a submanifold N of M , one obtains again
a Riemannian metric g̃ for N by pulling back g via the inclusion ι : N →M .
Consider the half-circle S1

h ⊂ R2, that is defined by

x2 + y2 = r2, y > 1. (3.1)

Compute the induced metric in two ways, once using x as a coordinate and once using polar
coordinates. You should find that

g̃ = r2dϕ2, resp. g̃ =
x2

r2 − x2
dx2. (3.2)

Check that these metrics are the same. In addition, find an example where the pull-back of a
metric, that is not positiv definite, is a degenerate one on the submanifold.

1We are a bit sloppy with the notation here. In principle one has to be very careful about where this functions are
defined.
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4 Differential forms 2 points

4.1 Wedge product and outer derivative 1 point

Given two differential forms

η =
1
p!
ηµ1...µpdx

µ1 ∧ · · · ∧ dxµp , ω =
1
q!
ων1...νqdx

ν1 ∧ · · · ∧ dxνq , (4.1)

the wedge product η ∧ ω is defined by

η∧ω =
1

(p+ q)!
(η∧ω)µ1...µp+qdx

µ1∧· · ·∧dxµp+q =
1
p!q!

ηµ1...µpων1...νqdx
µ1∧· · ·∧dxµp∧dxν1∧· · ·∧dxνq .

(4.2)
Here we have introduced

(η ∧ ω)µ1...µp+q =
1
p!q!

η[µ1...µp
ωµp+1...µp+q ]. (4.3)

The outer derivative acts on a form as

dω =
1
q!
∂µωµ1...µqdx

µ ∧ dxµ1 ∧ · · · ∧ dxµq . (4.4)

Show that

1.
ω ∧ η = (−1)pqη ∧ ω (4.5)

2.
d(ω ∧ η) = dω ∧ η + (−1)qω ∧ dη. (4.6)

4.2 The ∗-operator 1 point

In this exercise we want to explore some properties of the ∗-operator. We consider an n-dimensional
manifold with metric g of signature s (i.e. the number of negative eigenvalues of the metric). Given
a differential p-form

ω =
1
p!
ωµ1...µpdx

µ1 ∧ . . . dxµp , (4.7)

∗ω is defined by

∗ ω =
1

p!(n− p)!
√
|g|ωµ1...µpεµ1...µndx

µp+1 ∧ · · · ∧ dxµn . (4.8)

1. Show that
∗ ∗ = (−1)p(n−p)+s. (4.9)

2. Explicitly compute for polar coordinates of two-dimensional Euclidean space

∗ 1, ∗dr, ∗dϕ, ∗dr ∧ dϕ. (4.10)
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5 The deRham sequence for R3
2 points

We consider the de Rham complex for R3 that is given by

0 d // Ω0(R3) d // Ω1(R3) d // Ω2(R3) d // Ω3(R3) d // 0. (5.1)

Here we have denoted by Ωi(R3) the vector space of differential forms of degree i on R3. We
construct an isomorphism of complexes by

0 d // Ω0(R3) d //

δ0
��

Ω1(R3) d //

δ1
��

Ω2(R3) d //

δ2
��

Ω3(R3) d //

δ3
��

0

0 // C0(R3) α // V∞(R3)
β

// V∞(R3)
γ

// C0(R3) d // 0.

(5.2)

δ0 : Ω0(R3) ∼−→ C∞(R3) (trivial) (5.3)

δ1 : Ω1(R3) ∼−→ V∞(R3), δ1(aidxi) =

a1

a2

a3

 (5.4)

δ2 : Ω2(R3) ∼−→ V∞(R3), δ2(bijdxi ∧ dxj) =

 b1
b2
b3,

 , bk = εijkbij (5.5)

δ3 : Ω3(R3) ∼−→ C∞(R3), δ3(cijkdxi ∧ dxj ∧ dxk) = εijkcijk (5.6)

Here C∞(R3) and V∞(R3) denote the spaces of smooth functions respectively smooth vector-fields
on R3. Compute the maps α, β, γ, so that the diagram gets commutative. How can they be
identified with the three-dimensional vector-analysis operators grad, div, rot?

6 Integration on manifolds 2 points

6.1 The Stokes theorem 1 point

The Stokes theorem states that the integral over an exact form can be converted into an integral
over a boundary ∫

M
dω =

∫
∂M

ω. (6.1)

Show for the special case that the domain one integrates over is either a rectangular box or a square
this reproduces the Gauss- respectively the (two-dimensional) Stokes theorem∫

M
div~V d3x =

∫
∂M

~V ~νdA,

∫
F
rot ~W~νdA =

∫
C
~F . (6.2)

Here ~ν denotes the unit normal vector and C is the boundary curve of the area F .
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6.2 Integration of forms 1 point

Given an n-dimensional Riemannian manifold M only the integration of n-forms over M is well-
defined. Check that ∫

M
ω ∧ ∗η (6.3)

defines a scalar product on M . Here the result of the integral is understood to be zero, if the degree
of the wedged forms does not fit. Furthermore we define the integral of a function f over M as∫

M
f =

∫
M
f ∗ 1. (6.4)

Check for the example of three-dimensional polar coordinates that this reproduces the usual inte-
gration with the volume element

dV = r2 sin θdrdθdϕ. (6.5)
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