- 1.) Properties of global conformal transformations in two dimensions 6 pt We want to show that the group $SL(2, \mathbb{C})/\mathbb{Z}_2$ of global conformal transformations in two dimensions — also called the projective special linear group $PSL(2, \mathbb{C})$ — is isomorphic to the restricted four-dimensional Lorentz group $SO_+(1,3)$. (Recall that the restricted Lorentz group $SO_+(1,3)$ is the group of linear transformations on a four-vector x^{μ} that leaves the square of the norm $|x^{\mu}|^2 \equiv -(x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2$ invariant and that preserves both orientation of space and direction of time.)
 - a) To any four-vector x^{μ} we associate a 2 × 2-matrix $X = \sum_{\mu=0}^{3} x^{\mu} \sigma_{\mu}$ with σ_{0} the identity and $\sigma_{1}, \sigma_{2}, \sigma_{3}$ the Pauli matrices. Show that $|x^{\mu}|^{2} = -\det X$ and that any transformation $X \mapsto S^{\dagger}XS$ leaves the square of the norm invariant if S is a $SL(2, \mathbb{C})$ transformation.
 - b) Argue that any restricted Lorentz transformation can be associated to a $SL(2,\mathbb{C})$ matrix.
 - c) Analyze which $SL(2, \mathbb{C})$ transformations leave the matrix X invariants. Conclude that the group $SL(2, \mathbb{C})/\mathbb{Z}_2$ is isomorphic to the restricted Lorentz group $SO_+(1,3)$. Argue that therefore the group of global conformal transformations in two dimensions — also known as Möbius transformations —

$$z \mapsto \frac{az+b}{cz+d}$$
, $\begin{pmatrix} a & b\\ c & d \end{pmatrix} \in SL(2,\mathbb{C})$,

are isomorphic to the restricted Lorentz group $SO_+(1,3)$.

- d) Determine the Möbius transformation that maps three arbitrary but distinct points $p_1, p_2, p_3 \in \mathbb{C}$ to the points 0, 1 and ∞ on the compactified complex plane $\mathbb{C} \cup \infty$.
- e) For infinitesimal Möbius transformations, i.e.,

$$z \mapsto \frac{(1+\delta_1)z+\delta_2}{\delta_3 z+(1+\delta_4)}$$
, $\delta_1, \delta_2, \delta_3, \delta_4$ infinitesimal,

determine the variation $\epsilon(z)$ of the infinitesimal global conformal transformation $z \mapsto \tilde{z} = z + \epsilon(z)$.

2.) Clustery property

4 pt

Consider a generic four-point function of quasi-primary fields $\phi_k(z_k, \bar{z}_k)$, k = 1, 2, 3, 4, in a two-dimensional conformal field theory:

$$\langle \phi_1(z_1, \bar{z}_1)\phi_2(z_2, \bar{z}_2)\phi_3(z_3, \bar{z}_3)\phi_4(z_4, \bar{z}_4)\rangle = f(\eta, \bar{\eta}) \prod_{1 \le k < l \le 4} (z_k - z_l)^{h/3 - h_k - h_l} (\bar{z}_k - \bar{z}_l)^{\bar{h}/3 - \bar{h}_k - \bar{h}_l}$$

with $h_k > 0$ and $\bar{h}_k > 0$ for all k and

$$h = \sum_{k=1}^{4} h_k , \quad \bar{h} = \sum_{k=1}^{4} \bar{h}_k , \quad \eta = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_3)(z_2 - z_4)}$$

Show that a product of two-point functions is recovered in the limit when four points are paired in such a way that the two points in each pair are much closer to each other than the distance between the pairs.