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Introduction

Aim: to understand CFT’s in 2d.

Why?

(A) Second order phase transitions in 2d systems (so-called critical

phenomena). For example, the 2d Ising model. Take a 2d lattice of

critical sites (in principal, this is assumed to be infinite):

a

σ spin 1
2

These spins are equipped with a nearest neighbor interaction. The

energy for the system is given by

E({σ}) = −ε
∑

adjacent
lattice sites

σiσj

where σi ∈ ± 1
2 . There are ground states for the system: all states

having the same spin (ie either all | ↑〉 or all | ↓〉). The partition

function is

Z =
∑
{σ}

exp (−E({σ})β)

where β = 1
T is the inverse temperature.

We can then compute the correlation functions:

〈σi, σj〉 −
1

Z

∑
{σ}

exp (−E({σ}))σiσj ∼ exp

(
−|i− j|
ζ(T )

)
where |i− j| is the distance from the site i to the site j.

If T → ∞, then ζ(T ) → 0, so that 〈σi, σj〉 → 0. If T → Tc,

ζ(T )→∞, and the system reaches criticality.

At criticality, T = Tc, we have that

〈σi, σj〉 ∼
1

|i− j| 14

This theory is scale-invariant (for scales � a), and can be solved by

use of a 2-dimensional CFT1 1 Onsager won the ’68 Nobel prize in
Chemistry for his solution of the 2d

Ising model at criticality.
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(B) String theory provides other examples where CFT’s can be given

meaning. It concerns itself with the time evolution of 1d objects

(”strings“):

t

time

closed string

2d world sheet

This time evolution is described by the Polyakov action, which is

reparametrization invariant and Weyl invariant. Together these give

us conformal invariance, which leads to a 2d CFT description of 2d

worldsheets.

1 Conformal Field Theories in d dimensions

1.1 Conformal group in dimension d (d > 2)

Definition (Local Conformal Transformations). Let M,N be smooth

d-dimensional manifolds with metrics g and h respectively2. A local 2 Very generally, we can take (M, g)

and (N,h) to be semi-Riemannian.

That is, the ‘metrics’ can be taken
to give symmetric, nondegenerate,

bilinear pairings on the tangent spaces

(not necessarily positive definite).

diffeomorphism of open sets

φ : U ⊂M → φ(U) ⊂ N

is called a local conformal transformation if

φ∗h = Λ · g

for a smooth scale function

Λ : U → R>0

Remark. (local) conformal transformations preserve angles. Given

two vectors X,Y ∈ TpM , for p ∈ U , we then have

cos∠(φ∗X,φ∗Y ) =
h(φ∗X,φ∗Y )

|φ∗X|h|φ∗Y |h

=
φ∗h(X,Y )

|X|φ∗H |Y |φ∗h

=
Λg(X,Y )√

Λ|X|g
√

Λ|Y |g
= cos∠(X,Y )
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Remark. • Conformal transformations define ’new‘ metrics on a

space for M = N

g̃ = φ∗g = Λ · g

for φ : M → M . This implies, with a little computation, that the

Weyl Tensor remains invariant under conformal transformations,

but the Riemann tensor does not.

We will, for now, work with conformally flat space M = N = Rd,
with the metric

η = diag(−1, . . . ,−1︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
m

)

where n + m = d. So we can write a conformal transformation

φ : Rd → Rd Xµ 7→ φα(Xµ), by requiring the relation

ηαβ
∂φα

∂Xµ

∂φβ

∂Xν
= Ληµ,ν

• The 2d/3d Weyl tensor always vanishes on any 2d/3d manifold that

is locally conformally flat.

• In 2d, we can see from cartography that we can map a globe minus

a point to a sheet of paper by preserving angles.

We will now consider an infinitesmal transformationXµ 7→ Xµ +

εµ(X). Which gives us

ds2 → ds2 + (∂µεν + ∂νεµ)dXµdXν

as the transformation of line elements3 3 The line element is, as usual, defined

by

ds2 = ηµνdX
µdXνThis transformation is conformal if

∂µεν + ∂νεµ = ηµνC

By taking the trace of this relation, we can find that

∂µεν + ∂νεµ =
2

d
div(ε)ηµν (∗)

Furthermore

∂µ∂ν(divε) = ∂µ∂
ρ(∂νερ + ∂ρεν − ∂ρεν)

(∗)
=

2

d
∂µ∂ν(divε)−�∂µεν

Since this expression is symmetric under the interchange of µ and ν,

we can simplify to

2

d
∂µ∂ν(divε)− 1

2
�(∂µεν + ∂νεµ)

and, applying (∗) again, we get

(ηµν�+ (d− 2)∂µ∂ν)(divε) = 0
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Taking the trace, we then get

�(divε) = 0

Ansatz: For the infinitesmal transformations:

∂µ∂ν(divε) = 0 ⇒ divε = A+BµX
µ

Which implies

εµ = aµ + bµνX
ν + CµνρX

νXρ

where Cµνρ = Cµρν

From this, we can classify infinitesmal conformal transformations:

(i) εµ = aµ, called translations

(ii) εµ = bµνX
ν . In (∗), we get:

bµν + bµν =
2

d
ηµν(ητσbτσ)

a) εµ = wµνX
ν , where wµν = −wνµ, which we call rotations.

b) εµ = λ · ηµνXν = λXν which we call dilations.

(iii) εµ = CµνρX
νXρ. In (∗), we get4: 4 Where bµ = 1

d
Cρσµηρσ

Cµνρ = ηµρbν + ηµνbρ − ηνρbµ

so that

εµ = 2(b ·X)Xµ − bµ|X|2

which we call special conformal transformations (SCTs).

By integrating these infinitesmal versions, we can obtain expressions

for finite conformal transformations:

(i) Translations:

X̃µ = Xµ + aµ

(ii) Rotations:

X̃µ = Mµ
νX

ν

for Mµ
ν ∈ SO(n,m).

Poincaré Subgroup

(iii) Dilations:

X̃µ = ΛXµ

(iv) SCTs:

X̃µ =
Xµ − bµ|X|2

1− 2bµXµ + |b|2|X|2
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As it happens, the conformal group acting on Xµ is precisely

SO(n+ 1,m+ 1)

Interlude: Projective space RPd+1 = Rd+2 \ {0}/R∗.
Consider the map

ι : Rd → RPd+1

Xµ 7→
[

1

2
(1 + |X|2) : X1 : · · · : Xd :

1

2
(1− |X|2)

]
=: XP

Properties:

(i) ι(R) is on the projective light cone:

{0 = ηP(XP, XP)} ⊂ RPd+1

where

ηP = diag(−1, . . . ,−1︸ ︷︷ ︸
n+1

, 1, . . . , 1︸ ︷︷ ︸
m+1

)

(ii) SO(n+ 1,m+ 1) acts on RPd+1 in the canonical way

XA
P = MA

P BX
B
P

where

MA
P B ∈ SO(n+ 1,m+ 1)

(iii) Transformations in SO(n+ 1,m+ 1) induce the following confor-

mal transformations on Rd

a) Rotations:

MA
B =

1 0 0

0 Mµ
ν 0

0 0 1


with Mµ

ν ∈ SO(n,m) ⊂ SO(n+ 1,m+ 1).

b) Translations (Xµ → Xµ + aµ)

MA
B =

1 + 1
2 |a| −a

µ − 1
2 |a|

aµ 1 −aµ

− 1
2 |a| aµ 1− 1

2 |a|


Poincaré Subgroup

c) Dilations (Xµ → rXµ)

MA
B =

 1+r2

2r 0 1−r2

2r

0 1 0
1−r2

2r 0 1+r2

2r


d) SCT’s (Xµ → Xµ−bµ|X|2

1−2bµXµ+|b|2|X|2 )

MA
B =

1 + 1
2 |b| −b

µ − 1
2 |b|

−bµ 1 bµ

1 + 1
2 |b| −b

µ 1− 1
2 |b|
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Conformal Invariants

For points xi ∈ Rd

• If we require translational and rotational invariance, we can take as

our invariant

|x1 − x2|

• If we additionally require scale invariance, it suffices to add another

point:
|x1 − x2|
|x1 − x3|

• Applying an SCT, we get

|x1−x2| →
(
1− 2bx1 + |b|2|x1|2

)− 1
2
(
1− 2bx2 + |b|2|x2|2

)− 1
2 |x1−x2|

Therefore, conformal invariants are anharmonic ratios5: 5 Also called cross ratios

|x1 − x2||x3 − x4|
|x1 − x3||x2 − x4|

Remark. There are a total of N
2 (N − 3) distinct anharmonic invari-

ants for a set of N points6. 6 Warning: There can be compli-

cated algebraic relations among such
invariants.

1.2 Correlation function of Quantum Fields (d > 2)

We take the Euclidean signature in d dimensions, so that our confor-

mal group is SO(1, d+ 1). We then get the commutation relations

[JAB , JCD] = i (ηABJBC + ηBCJAB − ηACJBD − ηBDJAC)

And JAB = −JBA,

η = diag(−1, 1, 1, . . . , 1︸ ︷︷ ︸
d+1

)

and A,B,C,D range through −1, 0, 1, 2, . . . , D. For the Conformal

Generators7: 7 µ, ν are assumed to be strictly

positive in the definitions below.

• Lµν = Jµν Rotations

• Pµ = J−1,µ Translations

Poincaré Algebra

• D = J−1,0 Dilations

• Kµ = −J−1,µ + J0,µ SCTs
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The Conformal algebra is then the Poincaré algebra plus the com-

mutation relations

[D,Pµ] = iPµ

[D,Kµ] = −iK + µ

[D,Lµ,ν ] = 0

[Kµ, Pν ] = 2i(ηµνD − Lµν)

From these algebraic definitions, we can then get conformal trans-

formations, eg:

• exp (−ibµKµ) ∈ SO(1, d+ 1) SCT

• exp (−iaµPµ) ∈ SO(1, d+ 1) Translations

• exp (−iλD) ∈ SO(1, d+ 1) Dilation

• exp
(
− i

2ω
µ,νLµν

)
∈ SO(1, d+ 1) Rotation

Quantum Fields as ‘∞-dimensional representations’ of

conformal group

Example. We can think of functions {g} as representations of

SO(1, d + 1) via the map

ρg : SO(1, d + 1) ×Maps(Rd → R) → Maps(Rd → R)

(Λ, g) 7→ g ◦ fΛ−1

where

fΛ : xµ 7→ f ◦ Λ(xµ)

fΛ−1 : xµ 7→ f ◦ Λ−1(xµ)

We then have the infinitesmal generators of the conformal group in

the representation ρg

fΛ : xµ 7→ xµ + εµ(x)

fΛ−1 : xµ 7→ xµ − εµ(x)

Example. As an example, we can look at the infinitesmal dilation

lambda Λλ

fΛλ : xµ 7→ xµ + λxµ

So we then have

ρg (Λλ)(g)(xµ) = g(xµ − εµ(x)) = g(xµ) − λxµ ∂g

∂xµ
!
= e−iλDg(xµ)

which implies Dµ = −ixµdµ
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In a similar fashion, we can find that

Pµ = −i∂µ
Lµν = i(xµ∂µ − xν∂µ)

Kµ = −i(2xµx
ν∂ν − |x|2∂µ)

A Quantum Field ψ is then given by φA such that, for a finite

dimensional vector space V ,

ρψ : SO(1, d + 1) ×Maps(Rd → V ) → Maps(Rd → V )

(Λ, ψA) 7→ ρV (Λ)ABψ
B ◦ fΛ−1

Quasi-Primary Fields We consider a field ψ(x) at x = 0 8. We 8 x = 0 can be thought of as the
invariant locus with respect to the

action of the lorentz group, dilations,

and SCTs. See, eg, [1].

then have

Lµνψ(0) = Sµ,νψ(0)

Dψ(0) = −i∆ψ(0)

Kµψ(0) = −Kµψ(0)

We make the further assumption that we have an irreducible repre-

sentation of the Lorentz group, to get

[∆, Sµν ] = 0

Which, by Schur’s lemma, implies ∆ ∼ 1, ie a number, which we will

call the scaling dimension. We also get

[∆,Kµ] = −Kµ

so that Kµ = 0

We can also compute the ‘scaling dimension at other locations’

Dψ(xµ) = De−ix
µPµψ(0)

=
([
D, e−ix

µPµ
]

+ e−ix
µPµD

)
ψ(0)

[D,Pµ]=iPµ
=

(
e−ix

µPµ(xµPµ)− i∆e−ix
µPµ
)
ψ(0)

= (XµPµ − i∆)ψ(xµ)

If we assume our field is spinless, ie Sµν = 0, then the field is

characterized entirely by the scaling dimension D. We can then derive

the finite transformation behavior of a spinless field φ(x).

φ(xµ)
Λ−→ φ̃(x̃µ) =

∣∣∣∣∂x̃µ∂xν

∣∣∣∣∆/d φ(xµ)

xµ 7→ x̃µ = fΛ(xµ)

we call such fields Quasi-Primary Scalar Fields.
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Correlation Functions of Quasi-Primary Fields

From a CFT, we get the path integral measure

[dΦ] eS[Φ]

Where Φ is the fields in our theory, and S is the action9 functional. 9 Which must be conformally invari-
ant.The correlation function is then

〈φ1(x1) · · ·φN (xN )〉 =
1

Z

∫
[dΦ]e−S[Φ]Φ1(x1) · · ·ΦN (xN )

where

Z =

∫
[dΦ]e−S[Φ]

Applying a conformal transformation,

〈φ1(x̃1) · · ·φN (x̃N )〉 =
1

Z

∫
[dΦ̃]e−S[Φ̃]Φ̃1(x̃1) · · · Φ̃N (x̃N )

which implies

〈φ1(x̃1) · · ·φN (x̃N )〉 =

∣∣∣∣∂x̃µ1∂x̃ν1

∣∣∣∣−∆1/d

· · ·
∣∣∣∣∂x̃µN∂x̃νN

∣∣∣∣−∆N/d

〈φ1(x1) · · ·φN (xN )〉

2-point Correlation Functions

Take two fields φ1 and φ2. From the requisite symmetries, we can

deduce some of the form of the correlation function

• Rotation+Translation invariance implies

〈φ1(x1)φ2(x2)〉 = f(|x1 − x2|)

• Dilation x̃µ 7→ λxµ invariance implies

〈φ1(x̃1)φ2(x̃2)〉
〈φ1(x1)φ2(x2)〉

= λ−∆1−∆2

Together, these computations show us that

〈φ1(x1)φ2(x2)〉 =
C1

|x1 − x2|∆1+∆2

Now applying invariance under SCTs we notice that∣∣∣∣∂x̃k∂xµ

∣∣∣∣ =
1

(1− 2bµx
µ
k + |b|2|xk|2)d

=: Sk(bµ)

and then compute

〈φ1(x̃1)φ2(x̃2)〉 =
1

S1(bµ)∆1S2(bµ)∆2
〈φ1(x1)φ2(x2)〉

=
C12

S∆1
1 S∆2

2 |x1 − x2|∆1+∆2
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but, on the other hand

〈φ1(x̃1)φ2(x̃2)〉 =
C12

|x̃1 − x̃2|∆1+∆2

=
C12

S
(∆1+∆2)/2
1 S

(∆1+∆2)/2
2 |x1 − x2|∆1−∆2

Hence C12 6= 0 only if

1

2
(∆1 + ∆2) = ∆1 = ∆2

or, more precisely

〈φ1(x1)φ2(x2)〉 =

 C12

|x1−x2|2∆ ∆1 = ∆2 = ∆

0 else

One can perform similar simplifications for 3 and 4 point correla-

tion functions. It is left as an exercise to see

〈φ1(x1)φ2(x2)φ3(x3)〉 =

C123

|x1 − x2|∆1+∆2−∆3 |x1 − x3|∆1+∆3−∆2 |x2 − x3|∆2+∆3−∆1

and

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =

f(anh. ratios)
∏

1≤k<`≤4

|xk − x`|∆/3−∆k−∆`

where ∆ =
∑
i ∆i.

2 Conformal Field Theories in 2 Dimensions

2.1 Conformal Algebra in 2 Dimensions

Local conformal transformations in R2 with metric δαβ = ηαβ are

given by differentiable maps

ϕ : U ⊂ R2 → V ⊂ R2

where

ϕ∗η = Λη, Λ : UR>0

This implies

ηαβ
∂ϕα

∂xµ
∂ϕβ

∂xν
= Ληµν

where we assume the transformation is orientation preserving, ie∣∣∣∣∂ϕ(x1, x2)

∂(x1, x2)

∣∣∣∣ > 0
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We then obtain from η11 and η22

Λ = (∂1ϕ
1)2 + (∂1ϕ

2)2 = (∂2ϕ
1)2 + (∂2ϕ

2)2

and from η12 and η21

0 = (∂1ϕ
1)(∂2ϕ

1) + (∂1ϕ
2)(∂2ϕ

2)

We can combine these two equations into a single complex equation

to get (
(∂1ϕ

1)− i(∂2ϕ
1)
)2

=
(
(∂2ϕ

2) + i(∂1ϕ
2)
)2

or, equivalently

∂1ϕ
1 − i∂2ϕ

1 = ±(∂2ϕ
1 + i∂1ϕ

2)

We then get solutions

Orientation Preserving Orientation Reversing

(+) (-)

∂1ϕ
1 = ∂2ϕ

2 ∂1ϕ
1 = −∂2ϕ

2

∂2ϕ
1 = −∂1ϕ

2 ∂1ϕ
2 = ∂2ϕ

1∣∣∣∂ϕ(x1,x2)
∂(x1,x2)

∣∣∣ > 0
∣∣∣∂ϕ(x1,x2)
∂(x1,x2)

∣∣∣ < 0

Metric in homolorphic coordinates

The (+) solution gives precisely the Cauchy-Riemann Differential

Equation, so that local conformal transformations in complex coordi-

nates z = x1 + ix2 are local biholomorphic functions ϕ(z).

In terms of the holomorphic and antiholomorphic coordinates z, z,

we can rewrite the metric

ds2 = (dx1)2 + (dx2)2 = dzdz

where dz = dx + idy and dz = dx − idy. Under biholomorphic

mappings, we get

dz 7→ ∂ϕ

∂z
dz, dz 7→ ∂ϕ

∂z
dz

We then have that the metric transforms as

ds2 = dzdz
φ7→
∣∣∣∣∂ϕ∂z

∣∣∣∣2 dzdz
so that

∆(z, z) =

∣∣∣∣∂ϕ∂z
∣∣∣∣2

We thereby see that local conformal transformations are local holo-

morphic coordinate changes.

Remark. • Often we regard z and z as independent coordinates, and

enhance (x1, x2) ∈ R2 to complex coordinates (x1, x2) ∈ C2.

• ‘Physical Condition’. We impose z = z∗, the complex conjugate.
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Conformal Algebra

If we take an infinitesmal conformal transformation z 7→ z̃ =

z + ε(z), and take a Laurent expansion

ε(z) =

∞∑
n=−∞

cnz
n+1

where the cn are assumed to be infinitesmal, we can compute the

action on functions ϕ(z, z) ∈ Map(C→ R).

ecn`n+cn`nϕ(z, z) = ϕ(z − ε(z), z − ε(z))

which is equivalent to

(1 + cn`n + cn`n)ϕ(z, z) = (1− ε(z)∂z − ε(z)∂z)ϕ(z, z)

So the generators of the conformal algebra (in ‘function representa-

tion’) are

`n = −zn+1∂z, `n = −zn+1∂z

The commutation relations these generators satisfy (Witt Algebra

relations)

[`n, `m] = (n−m)`n+m

[`n, `m] = (n−m)`n+m

Remark. • Treating z and z as independent variables yields two

copies of the Witt Algebra A⊕A.

• Imposing the ‘physical condition’ leaves us with the subalgebra of

A⊕A generated by `n + `n and i(`n − `n for all n

• For a Quantum Theory, we need a central extension of the Witt

Algebra, which is the so-called Virasoro Algebra.

Global Conformal Transformations

On S2 = C∪{∞}, global holomorphic transformations are generated

by global vector fields.

We take as an Ansatz

v(z) = −
∞∑

n=−1

an`n

=

∞∑
n=−1

anz
n+1∂z

z→w= 1
z7→

∂z→w2∂w
−

∞∑
n=−1

anw
−n+1∂w

With a global vector field

v(z) = −(a−1`−1 + a0`0 + a1`1)

We then have generators (applying the physical condition)
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• `−1 + `−1 and i(`−1 − `−1) translations

• `0 + `0 dilation

• i`0 − i`0 rotation

• `1 − `1 and i(`1 − i`1) SCT

Finite Global Conformal Transformations

For S2 = C ∪ {∞}, a, b, c, d ∈ C, ad− bc = 1 we have[
a b

c d

]
∈ SL(2,C)/Z2 = SO+(1, 3)

which is the conformal group in d = 2 dimensions. From this, we have

the group of Möbius transformations of the sphere

z 7→ az + b

cz + d

Here, our generators are

• Translations [
1 ã

1

]

• Dilations [
λ1/2

λ−1/2

]

• Rotations [
ei
θ
2

e−i
θ
2

]

• SCT [
1 0

b̃ 1

]

Remark. • For four points z1, . . . , z4, we can define invariant 4-point

cross ratios

η =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)

There are relations among these cross ratios. In fact, for four

points, there is only one independent cross ratio. This can be seen

by noting that there is always a transformation in SL(2,C)/Z2

which maps 
z1

z2

z3

z4

 7→

∞
1

η

0
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Physical States are characterized by the eigenvalues of the dilation

operator `0 + `0 and the rotation operator i`0 − i`0. These can be

written in terms of the quantities h, h10 10 Sometimes known as the conformal

weights of the state |ψ〉.

`0|ψ〉 = h|ψ〉
`0|ψ〉 = h|ψ〉

The scaling dimension is the ∆ = h+ h (the dilation operator eigen-

value) and the spin11 is s = h− h (the ‘rotation operator eigenvalue’). 11 As one might expect, for bosonic

states, we have s ∈ Z. For Fermionic
states, s ∈ Z + 1

2
. We could also take,

more generally, a parafermionic state
s ∈ Q.

2.2 Correlation functions of (quasi-)primary fields

Definition. A field φ(z, z) of conformal weight (h, h) is a primary

field if it transforms under local conformal transformations

z 7→ φ(z) = z̃

locally as

φ(z, z) 7→ φ̃(z̃, z̃) =

(
∂φ

∂z

)−h(
∂φ

∂z

)−h
φ(z, z) (∗)

Remark. • A Field is called a quasi-primary field if (∗) holds for

global conformal transformations12 12 Sometimes also called SL(2,C)-

primaries

• A field wtih a different transformation behavior is called a sec-

ondary field.

If we take an infinitesmal variation of a primary field

z̃ = z + ε(z)

z̃ = z + ε(z)

We can compute

δε,εφ(z, z) = φ̃(z, z)− φ(z, z)

= φ̃(z̃ − ε(z), z̃ − ε(z))− φ(z, z)

Taylor expanding to first order we get

= φ̃(z̃, z̃)− ε(z)∂zφ̃− ε(z)∂zφ̃− φ(z, z)

=
[
(1 + ∂z(ε(z))

−h(1 + ∂zε(z))
−h − ε(z)∂z − ε(z)∂z − 1

]
φ(z, z)

which then becomes

δε,εφ(z, z) =
[
−(h(∂zε(z)) + ε(z)∂z)− (h(∂z − ε(z)) + ε(z)∂z)

]
× φ(z, z)

(∗∗)
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2-point correlation function of quasi-primary fields

We consider a quasi-primary field as above13. We can then compute 13 The equation (∗∗) holds for quasi-

primary fields where ε is infinitesmal

and a generator of a global conformal
transformation.

0 = δε,ε〈φ1(z1, z1)φ2(z2, z2)〉
= 〈δε,εφ1(z1, z1)φ2(z2, z2)〉+ 〈φ1(z1, z1)δε,εφ2(z2, z2)〉

We can write our infinitesmal conformal transformations as

ε = c−1 + c0z + c1z
2

ε = c−1 + c0z + c1z
2

for these ε and ε, (∗∗) holds for any quasi-primary field. This implies

that

0 = [h1(∂z1ε(z1)) + ε(z1)∂z1 + h2(∂z2ε(z2)) + ε(z2)∂z2 + c]× 〈φ1φ2〉

We can then use the coefficients of

ε(z) = c−1 + c0z + c1z
2

c−1: We have (∂z1 + ∂z2)〈φ1φ2〉 = 0 So

〈φ1φ2〉 = c(z1 − z2)

c0: We have

(h1 + h2 + z1∂z1 + z2∂z2)〈φ1φ2〉 = 0

so, substituting our first result, we get

(h1 + h2)c(z1 − z2) + (z1 − z2)c′(z1 − z2) = 0

and solving this differential equation:

c(z1 − z2) =
C12

(z1 − z2)h1+h2

c1: We have

(2h1z1 + 2h2z2 + z2
1∂z1 + z2

2∂z2)〈φ1φ2〉 = 0

substituting in

(2h1z1+2h2z2)
C12

(z1 − z2)h1+h2
−(h1+h2)(z2

1−z2
2)

C12

(z1 − z2)h1+h2+1
= 0

so
C12(h1 − h2)

(z1 − z2)h1+h2+1
= 0

which means that either C12 = 0 or (h1 = h2).
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If we add in complex conjugation, we see that

〈φ1(z1, z1)φ2(z2z2)〉 =


C12

(z1−z2)h1+h2 (z1−z2)h1+h2
h1 = h2, h1 = h2

0 else

Remark. • We have a single-values correlator for s = h− h ∈ Z or in

Z + 1
2 . This is owing to the face that

(z1 − z2)−2h(z1 − z2)−2h = |z1 − z2|−2h(z1 − z2)2s

If we let s ∈ Q, we get a multiple-valued correlation function for

parafermions.

• If we let spin equal zero, ie h = h, we recover our previous d-

dimensional result.

More generally, we can apply the same techniques to compute 3-

and 4- point correlation functions, finding, when we do, that

〈φ1(z1, z1)φ2(z2, z2)φ3(z3, z3)〉 =
C123

(z1 − z2)h1+h2−h3(z1 − z3)h1+h3−h2(z1 − z2)h2+h3−h1

× 1

(z1 − z2)h1+h2−h3(z1 − z3)h1+h3−h2(z2 − z3)h2+h3−h1

and

〈φ1(z1, z1)φ2(z2, z2)φ3(z3, z3)φ4(z4, z4)〉

= f(η, η)
∏

1≤≤`≤4

(zk − z`)h/3−hk−h`(zk − z`)h/3−hk−h`

where

η =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)

and

h =

4∑
i=1

hi

h =

4∑
i=1

hi

2.3 Radial Quantization

First Example

We now return to the context of string theory, with 2-dimensional

Minkowski space. Suppose we have a conformally flat world-sheet
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t

time

closed string

2d world sheet

x

where we have coordinates t ∈ R (‘time’) and x ∈ S1 = R/(L ·Z) where

L is the length of the string.

In 2d Minkowski space we can take the light cone coordinates t± x,

and apply a Wick Rotation

τ := it

So that we can define complex coordinates

ζ = τ + ix

ζ = τ − ix

with the identification ζ ∼ ζ + iL

We then have a conformal map to the punctured conformal plane

C∗

−∞ ∞

τ1 τ2

ζ 7→ exp( 2πζ
L )

τ = −∞
z = 0

τ =∞

τ1 τ2

In Quantization we have

• A Hilbert state space at each fixed spatial slice (ie, fixed time τ)

• Dynamics given by a propagator amounst such slices in time.
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On the conformal plane, we have

• Hilbert state space defined on circles about the origin

• Propagation of states in the radial direction

i) Dilation operator is the Hamiltonian for the string

ii) Rotation operator is a spatial translation along the string.

For such strings, a radial quantization scheme is very natural.

Second Example

We again consider the Euclidean space of statistical mechanics. The

standard quantization is comprised of:

• Hilbert Spaces of states along 1d slices (for example in a 2d lattice).

• Transfer matrices describing a correlation orthogonal to the quan-

tized slices.

In the limit where the lattice spacing goes to zero, and at criticality,

we have a conformal symmetry. So taking radial slices of the plane

and a radial propagator gives the same result14. Radial quantization is 14 We could also use something
stranger, like, for example

but in practice, the radial and eu-
clidean schemes prove easiest to work

with.

a convenient choice because of the use of the radial operator product

expansion.

In and Out States

We make the assumptions:

i) There is a vacuum state |0〉 from which we can construct the

Hilbert space of states in terms of creation operators (positive

frequency modes)

ii) As τ → ±∞, that is, as (z, z) → ∞, 0, the Hilbert space of states

looks like the Hilbert space of states for a theory of free fields.

We can define an in-state

|φin〉 = lim
z,z→0

φ(z, z)|0〉

This equality is known as the state-field correspondence
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Hermitian Product

In string theory, Hermition conjugation has no effect on the 2d

Minkowski space

• Hermitian conjugation on Euclidean time:

τ = it : τ 7→ −τ

• Hermitian conjugation on radial coordinates

z 7→ 1

z∗

On quasi primary fields, the Hermitian conjugation is given by:

φ(z, z)† = z−2hz−2hφ(
1

z
,

1

z
)

We can then define an out-state by

〈φout| := |φin〉

that is

〈φout| = lim
z,z→0

〈0|φ(z, z)†

This defines a good Hermitian product for quasi-primary fields.

As a first example, we can compute:

〈φout|φin〉 = lim
z,z,w,w→0

〈0|φ(w,w)†φ(z, z)|0〉

= limw−2hw−2h〈0|(φ(
1

w
,

1

w
)φ(z, z)|0〉

?
= limw−2hw−2h〈0|R

(
φ(

1

w
,

1

w
)φ(z, z)

)
|0〉

= limw−2hw−2h〈(φ(
1

w
,

1

w
)φ(z, z)〉

= lim
C

w2hw2h
(

1
w − z

)2h ( 1
w − z

)2h
So that

〈φout|φin〉 = C

More generally, if we consider multiple fields, we find

〈φ1,out|φ2,in〉 =

C12 h1 = h2, h1 = h2

0 else

In our computation above, one step went unexplained: The radial

ordering (?). We now delve into its meaning
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Recall that in QFT, the N -point correlator of quantum fields is

given by a time-ordering prescription.

〈φ1(x1, t1) · · ·φN (xN , tN )〉 = 〈0|T (φ1(x1, t1) · · ·φN (xN , tN )) |0〉

where

T (φ1(x1, t1) · · ·φN (xN , tN )) = ±φσ(1)(xσ(1), tσ(1)) · · ·φσ(N)(xσ(N), tσ(N))

The sign is due to Bose/Fermi statistics, and the permutation σ is

such that

tσ(1) > tσ(2) > · · · > tσ(N)

We can perform a similar ordering for radial quantization: the

radial ordering.

R (φ1(z, z)φ2(w,w)) =

φ1(z, z)φ2(w,w) |z| > |w|
±φ2(w,w)φ1(z, z) |z| < |w|

The positive sign comes in the case where at least one of the fields in

question is bosonic, and the minus sign in the case where both fields

are fermionic.

With the radial ordering, we have the operator-state correspondence

〈φ1(z1, z1) · · ·φN (zN , zN )〉 = 〈0|R (φ1(z1, z1) · · ·φN (zN , zN )) |0〉

Similarly to a Fourier expansion, we have the Mode expansion for

quasi-primary fields of dimension (h, h).

φ(z, z) =
∑
m,n∈Z

z−m−hz−n−hφm,n

where the φm,n are operators.

Using the calculus of residues, we can compute the φm,n

φm,n =

∮
dz

2πi
zm+h−1

∮
dz

2πi
zn+h−1φ(z, z)

which then gives us the operator product expansion for the Hermitian

conjugate

φ(z, z)† = z−2hz−2hφ(
1

z
,

1

z
) =

∑
n,m

z−m−hz−n−hφ−m,−n

Looking at

φ(z, z)† =
∑
m,n

z−m−hz−n−hφ†m,n

we see

φ†m,n = φ−m,−n



23

A well-defined in-state implies that

lim
z,z→0

φ(z, z)|0〉

must be finite. This, in turn, requires that we have

φm,n|0〉 = 0 for m > −h, n > −h

Remark. The mode expansion gives rise to string Fourier modes on

the cylinder

z = exp

(
2πi

L
(t+ x)

)
z = exp

(
2πi

L
(t− x)

)
giving the expansion

φ(z, z) =
∑
m,n∈Z

φm,n exp

(
−2πi

L
(∆ +m+ n)t

)
exp

(
−2πi

L
(s+m+ n)x

)
where s = h − h is the spin, ∆ + m + n is the energy eigenstate of

the mode, and s + m − n is the wave propagation along the spatial

direction of the string.

2.4 Operator product expansions

Correlators of 2 or more fields typically exhibit singularities as their

insertion points coincide. For example, for quasi-primaries

〈φk(z1, z2)φ`(z2, z2)〉 = 〈0|R(φk(z1, z1)φ`(z2, z2)|0〉

=
δ`k

(z1 − z2)2hk(z1 − z2)2hk

the last expression is called the canonical norm for quasi-primaries.

The operator product expansion (OPE): describes the behavior

of radially ordered quantum fields as the coincide. For example, for

A(z, z) and B(z, z)

R(A(z, z)B(w,w)) =

N∑
n=−∞

M∑
m=−∞

{A,B}n,m(w,w)

(z − w)n(z − w)m

with N,M ≥ 0. In this case, we get a finite number of singular terms.

These singular terms play a special role:

R(A(z, z)B(w,w)) ∼
N∑
n=1

M∑
m=1

{A,B}n,m(w,w)

(z − w)n(z − w)m
= A(z, z)B(w,w)

The degree zero term, known as the normal order product, is writ-

ten

: A(w,w)B(w,w) : = {A,B}0,0(w,w) =

∮
w

dz

2πi

∮
w

dz

2πi

R(A(z, z)B(w,w))

(w − z)(w − z)
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Thus

R(A(z, z)B(w,W )) =

singular terms

A(z, z)B(w,w) +
normal order product

: A(w,w)B(w,w) : +O(z−w, z−w)

Remark. • Fields φ(z) that depend only on z are called chiral fields.

Fields φ(z) that depend only on z are called anti-chiral fields

• OPEs of chiral fields will play an important role.

• Notation: In OPEs the radial order symbol R is often dropped

R(A(z, z)B(w,w)) = A(z, z)B(w,w)

OPEs and commutators

Let A(z) and B(z) be bosonic chiral fields. We can deform the

contour of a small circle about w as seen below

Im(z)

Re(z)

w

Im(z)

Re(z)

w
ε

So we can rearrange the contour integral of the radially ordered prod-

uct:∮
w

dz

2πi
R(A(z), B(w)) =

∮
|w|+ε

dz

2πi
A(z)B(w)−

∮
|w|−ε

dz

2πi
B(w)A(z)

= QAB(w)−B(w)QA

= [QA, B(w)]
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where QA =
∮

dz
2πiA(z).

The result is that contour integrals encode (anti-)commutators at

equal time15 15 Whether we get a commutator or

an anti-commutator is dependent on
the Bose/Fermi statistics. If at least

one of the operators is bosonic, we

have
[−,−]+ = [−,−]

If both are Fermionic, we have

[−,−]− = {−,−}

∮
χ

dz

2πi
R(A(z)B(w) = [QA, B(w)]±

More generally, we can take∮
dw

2πi

∮
dz

2πi
R(A(z), B(w)) = [QA, QB ]±

with QA and QB as above.

2.5 Energy-momentum tensor and conformal Ward identities

Interlude: Conserved charges and infinitesmal transformations of

fields.

If we have a (d + 1) dimensional QFT with a conserved Noether

current jµ, (ie, ∂µj
µ = 0) then we get a conserved charge (the Noether

Charge)

Q =

∫
dxd [j0(x)]

For infinitesmal symmetry transformations acting on a quantum

field φ(x),

δεφ(x) = φ̃(x)− φ(x) = −ε[Q,φ(x)]

where the last term is the equal time commutator.

In the context of a 2d CFT with radial quantization, the conserved

charge Q of the radial component of a conserved chiral current yields

δεφ(w,w) = −ε[Q,φ(w,w) = −ε
∮
w

dz

2πi
R(A, φ)

Energy-Momentum tensor

The energy-momentum tensor Tµ,ν generates local coordinate trans-

formations16. For Lorentz-invariant theories it is conserved 16 In Lagrangian theories, it is the
response of the Lagrangian to the

variation of space-time.∂µTµν = 0

so we get a conserved charge

Pµ =

∫
dxdTµ,nu

which are the momentum operators, and are translationally symmetric.

By rotational invariance, Tµν can also be chosen to be symmetric

Tµν = Tνµ

In conformal theories, we call the conserved current

jDµ = xνTνµ
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the dilation current because the associated charge D is the dilation

operator.

Scale invariance (generated by the dilation operator) leads to

0 = ∂µjDµ = Tµµ

so that the energy-momentum tensor is traceless in CFTs.

Back in the 2d setting, we can take holomorphic coordinates

z = x1 + ix2 z = x1 − ix2

∂z =
1

2
(∂1 − i∂2) ∂z =

1

2
(∂1 + i∂2)

We can then compute the energy-momentum tensor

Tz,z =
∂x1

∂z

∂x1

∂z
T1,1 +

∂x1

∂z

∂x2

∂z
T2,2 +

∂x2

∂z

∂x2

∂z
T2,2

=
1

4
(T1,1 − 2iT1,2 − T2,2)

Tz,z =
1

4
(T1,1 + 2iT1,2 − T2,2)

Tz,z = Tz,z =
∂x1

∂z

∂x1

∂z
T1,1 +

(
∂x1

∂z

∂x2

∂z
+
∂x2

∂z

∂x1

∂z

)
T1,2 +

∂x2

∂z

∂x2

∂z
T2,2

=
1

4
(T1,1 + T2,2)

From the metric

gz,z = gz,z = η(∂z, ∂z) = η(∂z, ∂z) = 0

gz,z = gz,z = η(∂z, ∂z) =
1

2

we can compute conservation laws:

i) Translation invariance gives

∂zTz,z + ∂zTz,z = 0

∂zTz,z + ∂zTz,z = 0

ii) Because of scale invariance

Tz,z = Tz,z = 0

so that

∂zTz,z = 0

∂zTz,z = 0

Implying that Tz,z and Tz,z are chiral and anti-chiral currents17, 17 Notation: the chiral energy-

momentum current is

T (z) := −2πTz,z(z)

and the anti-chiral is

T (z) := −2πTz,z(z)

respectively.
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Conformal Transformations of primary fields

Let φ(w,w) be a chiral field of conformal weight (h, h). Taking a

local infinitesmal coordinate transformation

z 7→ z̃ = z + ε(z)

we get

δεφ(w,w) = −[Qε, φ(w,w)]

= −
∮
w

dz

2πi
ε(z)R(T (z), φ(w,w))

= − (h(∂wε(w))φ(w,w) + ε(w)∂wφ(w,w)) (∗)

We notice that∮
w

dz

2πi

ε(z)φ(w,w)

(z − w)2
= ∂w(ε(w))φ(w,w)∮

w

dz

2πi

ε(z)φ(w,w)

(z − w)
= ε(w)∂wφ(w,w)

so that, with (∗) we find that a primary field φ(w,w) is characterized

by its OPE with T (z) and T (z).

R(T (z)φ(w,w)) ∼ h

(z − w)2
φ(w,w) +

1

z − w
∂wφ(w,w)

R(T (z)φ(w,w)) ∼ h

(z − w)2
φ(w,w) +

1

z − w
∂wφ(w,w)

Remark. Theres OPEs of φ(z, z) with T (z) and T (z) are often used

as the definition of a primary field.

Conformal Ward identities

Let φk(wk, wk) be any primary fields located at |wk| < R, k =

1, . . . , N . For z 7→ z + ε(z), we can use the contour

Im(z)

Re(z)

`R

w1

R

w2

w3
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to compute 〈∮
`R

dz

2πi
ε(z)T (z)φ1(w1, w1) · · ·φN (wN , wN )

〉
=

N∑
k=1

〈
φ1(w1, w1) · · ·

(∮
wk

dz

2πi
ε(z)T (z)φk(wk, wk)

)
· · ·φN (wN , wN )

〉
which implies

〈T (z)φ1(w1, w1) · · ·φN (wN , wN )〉

∼
N∑
k=1

(
hk

(z − wk)2
+

1

z − wk
∂

∂wk

)
〈φ1(w1, w1) · · ·φN (wN , wN )〉

which is known as the conformal Ward identity for primary fields.

The conformal Ward identities imply

δε〈φ1 · · ·φN 〉 = −
∮
`

dz

2πi
ε(z)〈T (z)φ1(w1, w1) · · ·φN (wN , wN )〉

N∑
k=1

∮
`

dz

2πi
ε(z)

(
hk

(z − wk)2
+

1

z − wk
∂

∂wk

)
〈φ1 · · ·φN 〉

in particular

δε〈φ1 · · ·φN 〉 = 0

for an infinitesmal global conformal transformation

ε(z) = c−1 + c0z + c1z
2

allows us to recover differential equations for correlators as discussed

before.

There are some technical assumptions that were needed to derive

the Ward identities:

• T (z) must be regular in the conformal plane18. 18 It is worth recalling that T (z)

should not be thought of as a func-
tion, but rather as a holomorphic

section of a bundle specified by the

scaling dimension. As a result, we
can require more strongly that T (z)

be regular on P1 without necessarily

imposing the condition that T (z) be
constant.

• Poles must only arise when the fields coincide.

• T (z) is an energy density, that is

Tµν ∼ (length)−2

From which we can calculate the scaling dimension

∆

2
= 2

which implies T (z) has conformal weight h = 2, and T (z) has

conformal weight h = 2.
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If we take the coordinate transformation

z 7→ w = −1

z

we see that

T (z) 7→ T̃ (w) =

(
dw

dz

)−2

T (z) = z4T (z)

which tells us that T (z) must decay as z−4 if regularity is to hold at

z =∞.

2.6 Examples of CFTs (Free CFTs)

Recall from QFT:

(A) Noether’s Theorem (See, eg, di Francesco et al): For a QFT

with an action

S[φA] =

∫
ddxL[φA]

and an infinitesmal symmetry transformations

x̃µ = xµ +
δxµ

δwa

φ̃A(x̃µ) +
δFA[φA]

δwa
wa

there is a conserved current

∂µjaµ = 0

given by

jaµ =

(
∂L

∂(∂µφA)
∂νφ

A − ηµνL
)
δxν

δwa
+

∂L
∂(∂µφA)

δFA

δwa

(B) Wick’s Theorem: A time-ordered product19 of fields equals 19 For CFT, we replace the time-
ordered product with the radially

ordered product, ie, τ(· · · ) with
R(· · · ).

the sum of normal ordered products with all possible contrac-

tions, eg

τ(φ1, φ2, φ3, φ4) =: φ1φ2φ3φ4 : +: φ1φ2 φ3φ4 : + · · ·+: φ1φ2 φ3φ4 :

+: φ1φ2 φ3φ4 : + · · ·+: φ1 φ2φ3 φ4 :

where the contractions are given by20 20 Here I use the notational conven-

tion that φ̂i means omit the entry
φi: φ1 · · ·φk1 · · ·φk2 · · ·φn : = (±) : φ1 · · · φ̂k1 · · · φ̂k2

· · ·φN : × 〈φk1
φk2
〉
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Example I: The Free Boson

Take the free, real field φ : R2 → R with

S[φ] =
g

2

∫
d2x∂µφ(x)∂µφ(y)

=
1

2

∫
d2x

∫
d2yφ(x)A(x, y)φ(y)

as the action21 where 21 Notice that this is a scalar field
whose action is obviously invariant

with respect to translations, rota-

tions, and scale trasformations. A
little work shows that it is also SCT

invariant.

A(x, y) = −gδ(xµ − yµ)∂µ∂
µ

The two point correlation function is based upon

R(φ(x)φ(y)) = GF (x, y)

the Feynman propagator, which is defined to be

Gf (x, y) = A−1(x, y)

in the sense that22 22 That is, in a very loose sense,

inverse under the inner product on

distributions of R2.

∫
d2yA(x, y)GF (y, z) = δ(xµ − zµ)

This implies that

δ(xµ − zµ) = −g ∂

∂xµ
∂

∂xµ
Gf (x, z) (∗)

As we saw previously, rotational and translational invariance means

GF (x, y) = GF (|x− y|) = GF (r)

and, expressing the equation (∗) in polar coordinates and integrating,

we get

1 = 2π

∫
dr

[
r

(
−g 1

r
∂rr∂rGF (r)

)]
which, when solved, yields

G′F (r) = − 1

2πgr

so that

GF (x, y) = − 1

2πg
log |x− y|+ const

In complex coordinates23, we can rewrite the action as 23 Where

d2z =
i

2
dzdz = dx2S[φ] = 2g

∫
d2z∂zφ(z, z)∂zφ(z, z)

so that

R(φ(z, z)φ(w,w)) = − 1

4πg
(log(z − w) + log(z − w) + const)

For a chiral (holomorphic) field, we have ∂zφ(z, z) = 0, so24 24 Note that, for free fields there is
only a single singular term in the
OPE.R(∂zφ(z, z)∂wφ(w,w)) ∼ − 1

4πg

1

(z − w)2
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Energy-Momentum tensor

We take an infinitesmal symmetry transformation

x̃µ = xµ + εµ

acting on S[φ].

φ̃(x̃µ) = φ(xµ)

Then we get

Tµν =
∂L

∂(∂µφ)
∂νφ− ηµνL

= g∂µφ∂νφ−
g

2
ηµν∂ρφ∂

ρφ

so the tensor is symmetric and traceless (as expected from a scale

invariant theory).

In complex coordinates, we can compute (cf section 2.5)

T (z) = −2π
1

4
(T1,1 − 2iT1,2 − T2,2)

= −2πg∂zφ(z, z)∂zφ(z, z)

From quantum theory, we have

〈0 | T (z) | 0〉 = 0

so that

T (z) = −2πg : ∂zφ(z, z)∂zφ(z, z :

OPEs

(A) We compute the radial ordering

R(T (z)∂wφ(w,w)) = −2πg : ∂zφ∂zφ : ∂wφ

∼ −2πg
(

: ∂z φ∂zφ : ∂w φ+: ∂zφ∂z φ : ∂w φ
)

∼ ∂zφ(z, z)

(z − w)2

∼ ∂zφ(w,w)

(z − w)2
+
∂zφ(w,w)

(z − w)

Which tells us that ∂zφ(z, z) is a chiral primary field with con-

formal weight h = 1. Similarly, we have that ∂zφ(z, z) is an

anti-chiral primary with conformal weight h = 1.
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(B) We now work on the energy-momentum tensor

R(T (w)T (w)) ∼ 4π2g2 (: ∂zφ∂zφ : : ∂wφ∂wφ : )

∼ 4πg

(
2( : ∂z φ∂z φ∂wφ∂w φ : ) + 4: ∂z φ∂zφ∂w φ∂wφ :

)

∼ 1/2

(z − w)4
− 4πg

: ∂zφ∂zφ :

(z − w)2

∼ 1/2

(z − w)4
+

2(−2πg : ∂wφ∂wφ : )

(z − w)2
− 4πg

: ∂2
wφ∂

φ
w :

(z − w)

Where the last step comes by Fourier expanding. In conclusion,

we then have

R(T (z)T (z)) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

(z − w)

where c = 1.

Remark. Note that T (z) is not primary because of the circled term.

It is ‘almost’ a chiral primary field of conformal weight h = 0

c is called the central charge. For the free boson, as we have seen,

c = 1.

Example II: The Free Fermion CFT We take the Euclidean

action of a real (Majorana) fermion25 25 Where the γµ are Pauli matrices.
In principle, we could take any, by

here we take

γ1 =

[
0 −i
i 0

]
and

γ2 =

[
0 1
1 0

]
so that

{γµ, γν} = 2ηµν

S[ψ] =
g

2

∫
d2xΨ†γ2γµ∂µΨ

= g

∫
d2xΨ†

∂z ddots

∂z

Ψ

= g

∫
d2z

(
ψ∂zψ + ψ∂zψ

)
where Ψ = (ψ,ψ).

The equations of motion are then

∂zψ = 0⇒ ψ is a chiral (holomorphic) field

∂zψ = 0⇒ ψ is an anti-chiral field

We can then calculate the Feynman Propagator26 26 As before, the idea is to write the

action in terms of a kernel which we
then invert

S[Ψ] =
1

2

∫
d2x

∫
d2yΨ†(x)A(x, y)Ψ(y)

A(x, y) = gδ(xµ − yµ)γ2γµ∂µ
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We then obtain the Feynman propagators27 27 Notice that the fermi statistics is
encoded within the propagator.

R(ψ(z, z)ψ(w,w)) ∼ 1

2πg

1

z − w

R(ψ(z, z)ψ(w,w)) ∼ 1

2πg

1

z − w
R(ψ(z, z)ψ(w,w)) = 0

We can also compute the energy-momentum tensor using Noether’s

theorem

T (z) = −πg : ψ∂zψ :

T (z) = −πg : ψ∂zψ :

OPEs

(A) We have two possible contractions to worry about in computing

the radial ordering

R(T (z)ψ(w,w) ∼ πg : ψ∂zψ : ψ(w,w)

∼ 1

2

∂zψ(z, z)

(z − w)︸ ︷︷ ︸
red

− 1

2
ψ(z, z)∂z

1

z − w︸ ︷︷ ︸
orange

∼ 1

2

∂wψ(w,w)

(z − w)2
+
∂wψ(w,w)

(z − w)

which implies that ψ(z, z) is a chiral primary with conformal

weight h = 1
2 . Similarly, ψ(z, z) can be shown to be an anti-chiral

primary with conformal weight h = 1
2

(B) We also have, for the energy-momentum tensor

R(T (z)T (w)) ∼
1/2
2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

(z − w)

which tells us that the free Majorana fermion has central charge

c = 1
2 .

2.7 The central charge c

Observation:

R(T (z)T (w)) ∼
c
2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

(z − w)

We call c the central charge. As we have already calculated, the free

boson has c = 1, and the free Majorana fermion has c = 1
2 .
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Properties

• For dilations z 7→ λz, we have

T (z) 7→ λ−2T (z)

which, in turn, implies

R(T (z)T (w)) 7→ λ−4R(T (z)T (w))

so the central charge is consistent with the expected scaling rela-

tion.

• For a sum of decoupled CFTs CFT1, . . . ,CFTN , the energy-

momentum tensor is

Ttotal(z) =

N∑
i=1

T1(z)

And, since the theories are decoupled, this means

R(Ttotal(z), Ttotal(w)) =

N∑
k=1

R(Tk(z)Tk(w))

In turn, this means that we get

ctotal = c1 + · · ·+ cN

ie, the central charge is an extensive quantity.

• Transformation behavior under infinitesmal conformal transforma-

tions

xµ 7→ x̃µ = xµ + εµ(x)

yields

δεT (w) = −[Qε, T (w)] = −
∮

dz

2πi
ε(z)R(T (z)T (w))

=

∮
dz

2πi

[
ε(z) c2

(z − w)4
+
zε(z)T (w)

(z − w)2
+
ε(z)∂wT (w)

z − w

]
= − c

12

(
∂3
wε(w)

)
− 2(∂wε(w))T (w)− ε(w)∂wT (w)

A finite local conformal transformation takes the form

z 7→ z̃ = w(z)

so that

T̃ (z̃) =

(
dw

dz

)−2 (
T (z)− c

12
{w(z); z}

)
with the Schwarzian derivative28 28 Interestingly, while the invariance

properties proved below related

the Schwarzian derivative to the
complex plane, it also appears to
bear some relation to solutions of the
hypergeometric equation.
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{w(z); z} =
w′′′(z)

w′(z)
− 3

2

(
w′′(z)

w′(z)

)2

For z 7→ u(z) and u 7→ w(u) we have the following ‘chain rule’ for

the Schwarzian derivative

{w(u(z)); z} = {u(z); z}+
du

dz
{w(u);u} (∗)

Now, moving on to global conformal transformations in PSL(2,C),

we have

z 7→ z̃ =
az + b

cz + d

Such transformations are generated by

(i) z 7→ λz, which has Schwarzian derivative

{λz; z} = 0

(ii) z 7→ z + c, which has Schwarzian derivative

{z + c; z} = 0

(iii) z 7→ − 1
z , which has Schwarzian derivative

{1

z
; z} =

−3!z−4

−z−2
− 3

2

(
−2z−3

−z−2

)2

= 6z−2 − 6z−2 = 0

As a result, we see that {w(z); z} = 0 for any PSL(2,C) transfor-

mation. This implies that for such transformations

T̃ (w) =

(
dw

dz

)−2

T (z)

and thus, T (z) is a chiral quasi-primary field with conformal weight

h = 2.



36

Conformal anomaly and central extensions

Symmetry group

G on some space

Quantum Mechanics

Want to impose G

action is unitary

Classical Mechanics

Poisson Algebra act-

ing on phase space

lifts to a

unitary

rep?

lifts to action

on phase

space?

Anomaly

Obstruction to lifts

Anomaly

Obstruction to lifts

In some cases of anomalies, we can find a group extension Ĝ of G

by some group H29 such that a representation can be constructed 29 That is, a Ĝ fitting into a short

exact sequence

0→ H → Ĝ→ G→ 0

with respect to ĝ

Example. In quantum mechanics in three dimensions, consider the

symmetry group SO(3), and the state space of spin 1
2 states∣∣∣∣12 ,±1

2

〉
The action of

e2πiJ3

∣∣∣∣12 ,±1

2

〉
= e2πi(± 1

2 )

∣∣∣∣12 ,±1

2

〉
= −

∣∣∣∣12 ,±1

2

〉
does not quite agree with identites.

However, there is an extension of SO(3) by Z/2, ie

SU(2)/(Z/2) ∼= SO(3)

Which implies that, taking Ĝ = SU(2), and considereding[
−1

−1

]
∈ SU(2)

we get the desired result.

Moreover, this extension is central. That is, Z/2 is in the center of

SU(2).
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Example (Classical Mechanics). We can find an explicit central

extension of the Galileo group, see [2] for details.

Central Extensions of the deWitt Algebra

We consider the OPE of T (z), the infinitesmal generator for local

conformal transformations.

R(T (z), T (w)) ∼ c/2

(z − w)4
+

zT (w)

(z − w)2
+
∂wT (w)

z − w

Recall that T (w) has the expansion

T (z) =
∑
n∈Z

z−n−2Ln

Ln =

∮
dz

2πi
zn+1T (z)

which gives us the commutation relations

[Ln, Lm] =

∮
0

dw

2πi

∮
w

dz

2πi
wm+1zn+1R(T (z)T (w))

From these relations, we retrieve the Virasoro Algebra Vir⊕Vir30 30 This algebra is completely charac-
terized by the commutation relations

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln, Lm] = 0

Claim. Vir is a central extension of the deWitt algebra31 A by C.

31 Whose commutation relations are of
the form

[`n, `m] = (n−m)`n+m

That is, there is a short exact sequence of Lie algebra homomorphisms

0→ C f→ Vir
g→ A→ 0

where C is generated by c, and there includes into the center of Vir,

and f, g respect the Lie bracket of Lie algebras.

Remark. Vir is the unique non-trivial32 central extension of A.
32 Non-trivial meaning the sequence

does not split, that is, is not equiva-
lent to the sequence

0→ a→ a⊕ g→ g→ 0

To see why this is the case, we first comment that non-trivial cen-

tral extensions are classified by the cohomology group

H2(g, a) =
Z2(g, a)

B2(g, a)

Where

(a) Θ ∈ Z2(g, a) means that

Θ : g⊗ g→ a

Θ(X,Y ) = −Θ(Y,X)

Θ(X, [Y,X]) + Θ(Z, [X,Y ]) + Θ(Y, [Z,X]) = 0

we call such Θ cocycles

(b) Θ ∈ B2(G, a), the exact cocycles, are characterized by the prop-

erty that there exists

µ : g→ a

such that

Θ(X,Y ) = µ([X,Y ])
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Given a representative of an equivalence class [Θ] ∈ H2(g, a), we see

that Θ defines a Lie bracket for h (The direct sum of g and a as vector

spaces) by the formula33 33 More generally, the second Lie Al-

gebra Cohomology classifies extensions
of a Lie algebra g by a module over

g. See, for example [3] pp. 234 or [4]

pp. 153 for a purely mathematical
treatment.

[L⊕Θ, L′ ⊕Θ]h = [L,L′] + Θ([L,L′])

Since the Θ is exact, we have

L̃ = L⊕µ L

and hence

[L̃, L̃′]h = [L̃, L̃′]g

Now, returning to the case of the de Witt algebra A, one can com-

pute that

H2(A,C) ∼= C ∼= 〈Θ〉

where

Θ(Ln, Lm) =
c

12
n(n2 − 1)δn+m,0

This tells us that Vir is unique as a non-trivial central extension34. 34 For a more thorough treatment, see
[5] ch. 4 & 5.

The physical interpretation of c

(1) Casimir Energy35: Previously we mapped the cylindrical world- 35 The Casimir effect is a phenomenon
whereby a force is observed between

two plates positioned extremely close

together.

sheet of a string to the (punctured) conformal plan. If we now do

the reverse, we get a map

z 7→ ζ =
L

2π
log(z)

where L is the circumference of the cylinder. In these new coordi-

nates,

Tcyl(ζ) =

(
2π

L

)2

z2︸ ︷︷ ︸
( dζdz )

2

T (z)− c

12

Schwarz. Deriv.︷ ︸︸ ︷
{log(z), z}︸ ︷︷ ︸

1
2 z
−2


So that

Tcyl(z) =

(
2π

L

)2 (
z2T (z)− c

24

)
Assuming that the expectation values satisfy

〈T (z)〉 =
〈
T (z)

〉
= 0

then

〈T0,0〉 = − 1

2π

(
〈Tcyl(ζ)〉+

〈
T cyl(ζ)

〉)
=
π(c+ c)

12L2
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This allows us to compute an energy for the cylinder

Ecyl = −
∫ L

0

〈T0,0〉 = −π(c+ c)

12L

which is the Casimir energy.

τ

Ecyl

Notice that, as expected, if L→∞, we have Ecyl → 0

Casimir Energy of the Free Scalar Field (Heuristic deriva-

tion):

We can compute the ground state energy of a sum of harmonic

oscillators

E|0〉 =
∑

p∈{Harm. Osc.}

1

2
ωp

which yields36 36 We can think of our harmonic

oscillators as merely being waves on a
τ -slice. The factor of 2 appearing in

the equation can then be said to arise

as a result of left- and right-moving
waves (sin and cos respectively).

E|0〉 = 2

∞∑
k=1

1

2

(
2π

L
· k
)

To attempt to remove this divergence, we introduce the UV regu-

lator

ε =
L

ΛUV
� 1

and add an exponential damping term

Eε|0〉 = 2

∞∑
k=1

1

2

(
2π

L
· k
)
e−εk

=
2π

L

d

dε

( ∞∑
k=0

e−εk

)

=
2π

L

(
1

ε2
− 1

12
+O(ε)

)
We then define the regularized energy to be

Ereg|0〉 = lim
ε→0

(
Eε|0〉 −

2π

Lε2

)
= − π

6L

And, since for the scalar field c = c = 1,

Ereg|0〉 = − π

12L
(c+ c)
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(2) Trace anomaly on a closed oriented Riemann Surface Cg
of genus g:

On the classical level, Tµµ = 0.

On the quantum level, we get

〈Tµµ 〉Cg ∼ c ·R

where R is the Ricci scalar37. 37 The term on the left hand side
is called the trace anomaly. Notice

that R is a local quantity which
depends locally on the metric and has

scaling dimension 2. This dependence

on the metric is acceptable since a
conformal transformation is also a

metric transformation.

The proportionality constant can be computed from the free

fermionic CFT. See [6] for more details. This yields

〈
Tµµ
〉

=
c

24π
R

2.8 The Hilbert Space of States

As before we consider the OPE

T (z)T (w) ∼ c/2

(z − w)4
+

zT (w)

(z − w)2
+
∂wT (w)

z − w

with

T (z) =
∑
n

z−n−2Ln

and the commutation relations

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)

In this system the vacuum, T (z)|0〉 for z → 0 must be well defined,

which implies that38 38 This follows from the fact that
T (z)|0〉 must not have singular terms.Ln|0〉 = Ln|0〉 = 0

for n > −2.

In particular, the vacuum |0〉 invariant under global conformal

transformations, which are generated by L±1, L0, L±1, and L0.

Raising and Lowering operators of primaries

We consider a primary of conformal weights (h, h)

φ(w,w) =
∑
k,m

w−m−hw−k−hφm,k

And the commutation relations39 39 Following from the OPE

T (z)φ(w,w) ∼
hT (w)

(z − w)2
+
∂wT (w)

(z − w)[Ln, φ(w,w)] =

∮
w

dw

2πi
R(T (z)φ(w,w))zn+1

− h(n+ 1)wnφ(w,w) + wn+1∂wφ(w,w)

Which, in turn, implies40 40 Because φ−m,−k|0〉 vanishes for
m < h, k < h.
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[Ln, φm,k] = (n(h− 1)−m)φn+m,k

We define an asymptotic state

|h, h〉 := φ(0, 0)|0〉 = φ−h,−h|0〉

And get the action of L0

L0|h, h〉 = [L0, φ(0, 0)]|0〉 = h|h, h〉

analogously, we see that

L0|h, h〉 = h|h, h〉

We then see that |h, h〉 is the energy eigenstate of the Hamiltonian

H = L0 + L0

The commutation relations

[L0, φm,k] = −mφm,k

tell us that φm,k are raising operators for m < 0 and lowering opera-

tors for m > 0.

Verma Module

The Virasoro raising operators L−m (m > 0) acting on |h, h〉 yield

[L0, L−m] = mL−m

⇒ L0L−m|h, h〉 = (m+ h)|h, h〉

By similar arguments, we see that Lm for m > 0 are lowering

operators

Lm|h, h〉 = Lmφ−h,−h|0〉

= (m(h+ 1) + h)φ−h+m,−h|0〉

= 0

where the last equality holds because φ−m,−h|0〉 = 0 for m < h.

Definition. A descendant state is given by acting with a chain of

raising operators L−m1 , . . . , L−kn on the asymptotic state |h, h〉. Any

descendant state can be written in the form

L−k1 · · ·L−kn |h, h〉

with the ordering convention 1 ≤ k1 ≤ k2 · · · ≤ kn

The Hilbert space of states arising from |h, h〉 is called a Verma

modules. It forms a representation of the Virasoro algebra41 41 ie a module over the Virasoro
algebra.



42

2.9 Conformal Families and Operator Algebra

Recall that a descendant state42 42 Recall:

T (z) =
∑
n

z−n−2LnL−n|h, h〉 = [L−n, φ(0, 0)]|〉

=

∮
0

dz

2πi

R(T (z)φ(0, 0)

zn−1
|0〉

for n ≥ 1 yields a definition of a descendant field (secondary field):

φ{u}(w,w) =

∮
w

dz

2πi

R(T (z)φ(w,w))

(z − w)n−1

for n ≥ 1. Recursively, we have descendant states:

φ{ks,ks−1,...,k1}(w,w) =

∮
w

dz

2πi

R(T (z)φ{ks−1,...,k1}(w,w)

(z − w)ks−1

where ki ≥ 1

Remark.

• We use the short-hand notation

φ{
~k}(w,w) = φ{ks,ks−1,...,k1}(w,w)

• If we include anti-holomorphic descendants43, we get states 43 Using the operator L−n instead of
L−n.

φ{
~k},{~k}(w,w)

We can also compute correlation functions of descendants, for in-

stance:

〈φ{k}0 (w0)φ1(w1) · · ·φN (wN )〉 =

∮
w0

dz

2πi

1

(z − w0)k−1
〈T (z)φ0(w0) · · ·φN (wN )〉

=

∮
w0

dz

2πi

1

(z − w0)k−1

×

(
N∑
n=0

(
1

(z − wn)
∂wn +

hn
(z − wn)2

)
〈φ0(w0) · · ·φN (wN )〉

)
where the second equality follows from the Ward identity (cf section

2.5).

The correllators

〈T (z)φ0(w0) · · ·φN (wN )〉

can have poles only at z → wk. This implies that

〈φ{k}0 (w0)φ1(w1) · · ·φN (wN )〉 = −
N∑
`=1

∮
w`

dz

2πi

1

(z − w0)k−1

×

(
N∑
n=0

(
1

z − wn
∂wn +

hn
(z − wn)2

)
〈φ0 · · ·φN 〉

)

= −
N∑
`=1

(
∂w`

(w` − w0)k−1
+ (−(n− 1))

hell

(w` − w0)k

)
× 〈φ0 · · ·φN 〉



43

So that

〈φ{k}(w0) · · ·φN (wN )〉 = L−k〈φ0(w0) · · ·φN (wN )〉

where

L−k =

N∑
`=1

(
(k − 1)h`

(w` − w0)k
− 1

(w` − w0)k−1
∂`

)

In general, any correlator

〈φ{
~k0}

0 · · ·φ{
~kN}

N 〉

can be rewritten in terms of differential operators acting on

〈φ0 · · ·φN 〉

with the help of the Ward identity. Therefore,

〈φ0 · · ·φN 〉

determines all descendant correlators.

Definition. The set of a primary field φ together with all its descen-

dant fields is called the conformal family of φ, which we denote by

[φ].

Conformal families have the following properties:

• Members of the conformal family [φ] transform under (local) confor-

mal transformations among themselves. That is, OPEs of T (z) with

any field of [φ] will involve only fields of [φ].

• We have the operator state correspondence

{Conformal families} 1:1↔ {Verma Modules}

The Operator Algebra

For a given CFT, the OPEs among all its primaries (including

regular terms) form the so-called operator algebra. The knowledge of

the operator algebra determines all correlators of the CFT (it ‘solves’

the CFT).

Given a CFT (with countably many primaries), we normalize pri-

maries such that

〈φk(w,w)φ`(z, z)〉 =
δk`

(z − w)2hk(z − w)2h`

Then44, 44 See, for instance, the definitions of
in and out states in section 2.3.

lim
(w,w)→∞
(z,z)→0

w2hkw2hk〈φk(w,w)φ`(z, z)〉 = 〈hk, hk|h`, h`〉 = δk`
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The orthogonality of primaries therefore implies the orthogonality of

entire Verma modules. To see this, we can use the Virasora algebra for

descendant states. For example:

L−n|h`, h` and L−n2
L−n3

|hk, hk〉 (ni > 0)

gives us

〈hk, hk|L†−n3
L†−n2

|h`, h`〉 = 〈hk, hk|Ln3
Ln2

L−n1
|h`, h`〉

= 〈hk, hk|Ln3 [Ln2 , L−n1 ]|h`, h`〉
= 〈hk, hk|Ln3

((n2 + n1)Ln2−n1
)

+
c

12
n2

2(n2
2 − 1)δn2−n1,0|h`, h`〉

= (n2 + n1)〈hk, hk|Ln3
Ln2−n1

|h`, h`〉 non-vanishing
for n1>n2

n1>n2= (n2 + n1)〈hk, hk|[Ln3 , Ln2−n1 ]|h`, h`〉
= (n2 + n1)〈hk, hk|(n3 + n1 − n2)Ln2−n3−n1

+
c

12
n3(n2

3 − 1)δn2+n3−n1,0|h`, h`〉

= (n2 + n1)δn2+n3,n1
((n3 + n1 − n2)h`

+
c

12
n3(n2

3 − 1))〈hk, hk|h`, h`〉

= 0

Scale invariance determines the structure of the operator alge-

bra:

φk(z, z)φ`(0, 0) =
∑
[φs]

∑
{~k}

∑
{~k}

[
C
s{~k}{~k}
k` zhs−hk−h`+|

~k|

×zhs−hk−h`+|~kφ{~k}{~k}s (0, 0)

]
where

|~k| =
∑
n

kn

and
~k = (k1, k2, . . .) k1 ≤ k2 ≤ k3 · · ·

The constants C
s{~k}{~k}
k` are the structure constants of the operator

algebra.

Three-Point Correlator
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We can compute the correlator

〈φs|φk(z, z)|φ`〉 = lim
w,w→∞

w2hsw2hs〈φs(w,w)φk(z, z)φ`(0, 0)〉

= lim
w,w→∞

Csk`
w2hs

zhk+h`−hswhs+h`−hk(w − z)hs+hk−h`

×
(

anti-holomorphic
part

)
=

Csk`

zhk+h`−hszhk+h`−hs

or, alternately

〈φs|φk(z, z)|φ`〉 = 〈φs|
∑
[φ`]

∑
{~k}

∑
{~k}

[. . .] |0〉

=
∑
r

C
r{}{}
k` 〈φs|φr〉zhs−hk−h`zhs−hk−h`

=
δsrC

r{}{}
k`

zhk+h`−hszhk+h`−hs

so that

C
s{}{}
k` = Csk` = Csk`

Since all correlators of descendants arise from correlators of pri-

maries, one can show that:

C
s{~k}{~k}
k` = Csk`β

s{~k}
k` β

s{~k}
k`

where

β
s{~k}
k` = β

s{~k}
k` (hs, hk, h`, c)

β
s{}
k` = 1

Example. Consider two chiral primaries φk(z) and φ`(z) with h =

hk = h` (for simplicity), then

φk(z)φ`(0) =
∑
s

Csk`z
hs−2hXs(z)

where

Xs(z) =

∞∑
N=0

∑
{~k}
|~k|=N

zNβ
s{~k}
k` L−{~k}φs(0)

Hence

Xs(z)|0〉 =

∞∑
N=0

zN |N ;hs〉

where |H;hs〉 is the level N state descending from

|φs〉 = |hs〉
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We can then compute:

Lnφk(z)φ`(0) = [L− n, φk(z)]|h`〉
=
(
zn+1∂z + (n+ 1)hzn

)
φk(z)|h`〉

so that

Ln (Xs(z)|0〉) =

∞∑
N=0

zNLn|N ;hs〉

!
=

∞∑
N=0

(
(N + hs − 2h)zn+n + (n+ 1)hzN+n

)
|N ;hs〉

Which gives us that

Ln|N + n;hs〉 = (hs + (n− 1)h,+N)|N ;hs〉 (∗)

For low N , we can then begin to examine what descendant states

are produced:

Level 1 There is one descendant state

|1;hs〉 = β
s{1}
k` L−1|hs〉

(i) L1|1;hs〉
(∗)
= hs|0;hs〉 = hs|hs〉

(ii) L1|1;hs〉 = β
s{1}
k` [L1, L−1]︸ ︷︷ ︸

2L0

|hs〉 = 2β
s{1}
k` h2|h2〉

Hence,

β
s{1}
kl =

1

2

Level 2 There are 2 descendant states

|2, hs〉 = β
s{2}
k` L−2|hs〉+ β

s{1,1}
k` L−1L−1|hs〉

(i) We have

L1|2;hs〉
(∗)
= (hs + 1)|1;hs〉 =

1

2
(hs + 1)L−1|hs〉

Ls|2;hs〉
(∗)
= (hs + h)|hs〉

From (i) and (ii), we find a pair of linearly independent equations

for β
s{1,1}
k` and β

s{2}
k` :

β
s{1,1}
k` =

c− 12h− 4hs + chs + 2h2
s

4(c− 10hs + 2chs + 16h2
s)

β
s,{2}
k` =

2h− hs + 4hhs + h2
s

c− 10hs + 2chs + 16h2
s
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Remark.

• All of the coefficients β
s{~k}
k` (hk, h`, hs, c) can, in principle, be recur-

sively determined. As a result, the operator algebra of a CFT is

determined completely by

a) conformal families [φs]

b) three-point correlators of the primaries, ie Csk`

• Csk` must be obtained separately (eg, by dynamic input or crossing

symmetries).

2.10 Conformal Blacks & Crossing Symmetries

Having now treated three-point correlation functions, we an in a posi-

tion to revisit four-point and higher correlation functions, ie

〈φk(z1, z1)φ`(z2, z2)φm(z3, z3)φn(z4, z4)〉

We apply a conformal transformationwhich sends

z1 →∞, z2 → 1, z3 → η, z4 → 0

where, η is, as usual, the cross ratio

η =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)

We can then write down a correlation function matrix element45

45 Where we use the indexing con-

vention that the indices are read

counterclockwise around the symbol,
as in

G`kmn

G`kmn(η, η) = lim
z,z→∞

z2hkz2hk〈φk(z, z)φ`(1, 1)φm(η, η)φn(0, 0)〉

= 〈hk, hk|φ`(1, 1)φm(η, η)|hn, hn〉

If we then insert the operator product expansion of φm(η, η) and

φn(0, 0), we get

G`kmn(η, η) =

〈
hk, h)k | φ`(1, 1)

∑
[φp]

∑
~k,~k

Cp{
~k}{~k}

mn ηhp−hm−hn−|
~k|

×etahp−hm−hn−|
~k| × L−{~k}L−{~k} | hp, hp

〉
We can then compute

G`kmn(η, η) =
∑
[φp]

CpmnCpk`F`kmn(p|η)F`kmn(p|η)
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where

F`kmn(p|η) = ηhp−hm−hn
∑
{~k}

η|
~k|βp{

~k}
mn

〈hi|φj(1)L−{~k}|hp〉
〈hi|φj(1)|hp〉

× L−{~k}L−{~k}|hp, hp〉

The

F`kmn(p|η)

are called conformal blocks of the conformal family [φp].

Remark. • F`kmn(p|η)ηhn+hm−hp are regular holomorphic functions at

η = 0.

• The coefficients of the expansion of F`kmn(p|η) depend only on

c, hp, h`, hk, hm, hn

that is, there is no dependence on the 3-pt structure constants.

• For explicit expressions for F`kmn(p|η), see, eg, [7]

Crossing Symmetries

The Gijk` depend on a particular order of primaries, which results

in one particular OPE. We could, however, think of reordering the

primaries to get a different expression.

We can diagrammatically represent the conformal blocks in the

following way, permuting the indices each time46: 46 Only the index circled in orange
must be fixed under this permutation.

This is because it determines both the

out state and the ηhi··· regularization
factor in the limit.

1)

F j i

k` (p|x) =

(1) j i (∞)

(η) k ` (0)

p

which, in turn, implies that we can write the s-channel expres-

sion47 47 From quantum field theory one

would also expect a T-channel and a
U-channel, which, as we will shortly

see, also exist.

Gji
k`(x) =

∑
p

Cp
ijCpk`


j i

(η) k `

p




j i

(η) k `

p


Here, we have

x =
(∞− 1)(η − 0)

(∞− η)(1− 0)
= η



49

2)

F jik`(p|x) =

(1) j i (∞)

(η) k ` (0)

p

giving the t-channel

G`i
kj(1− η, 1− η) =

∑
p

Cp
i`Cpkj


η

p


η

p


Here we have

x =
(∞− 0)(η − 1)

(∞− η)(0− 1)
= 1− η

3)

Fki`j (p|x) =

(1) j i (∞)

(η) k ` (0)

p

giving the u-channel

G`i
kj

(
1

η − 1
,

1

η − 1

)
=
∑
p

Cp
ikCp`j


η

p


η

p


here,

x =
(∞− η)(0− 1)

(∞− 0)(η − 1)
=

1

η − 1

We would expect these different interpretations to agree, that is, we

impose the crossing symmetries

Gjik`(η, η)︸ ︷︷ ︸
s-channel

= G`ikj(1− η, 1− η)︸ ︷︷ ︸
t-channel

= Gki`j

(
1

η − 1
,

1

η − 1

)
︸ ︷︷ ︸

u-channel

Bootstrap approach: Specify the dynamics of a CFT by consis-

tency using crossing symmetries.

Given a CFT with central charge c and N conformal families we

have

N3︸︷︷︸
Ck`m

+ N︸︷︷︸
h`

parameters, for k, `,m ∈ {1, . . . , N}. The crossing symmetries provide

N4 constraints, so naive counting suggests that crossing symmetries

fix all unknown parameters. This is true in some cases, eg for minimal

models.
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Remark. Higher point correlators can be calculated analogously to

the 4 point case.

3 Minimal Models

Definition. A minimal model conformal field theory is a conformal

field theory with a finite numbe rof conformal families.

Example. The 2d Ising model at criticality.

Remark. For the purposes of this lecture, we will focus on unitary

minimal models.

3.1 Warm-up: Representations of su(2)

The Lie algebra48 su(2) has generators J3 and J±
49, satisfying 48 More commonly studied are rep-

resentations of the Lie group SU(2),

but for our purposes, we need the

corresponding Lie algebra.
49 It also admits a Casimir Operator

J2 := J3 +
1

2
{J+, J−}

[J3, J±] = ±J±
[J+, J−] = 2J3

To find representations of su(2), we start with a highest weight

state |j〉 with

J3|j〉 = j|j〉
J+|1〉 = 0

We can then define a decendant state Jk−, where

J3(Jk−|j〉) = (j − k)|Jk−|j〉

J+(Jk−|j〉) = 2

k−1∑
`=0

Jk−`−1
− J3J

`
−|j〉

= 2

(
k−1∑
`=0

(j − `)

)
Jk−1
− |j〉

= k(2j + 1− k)Jk−1
− |j〉

This implies that, for j ∈ 2N0, the value k = 2j + 1 yields a highest

weight state, ie

J+

(
J2j+1
− |j〉

)
= 0

The state

|χ2j+1〉 := J2
−j + 1|j〉

is called a singular vector. |χ2j+1〉 generates a subrepresentation of the

highest weight representation generated by |j〉.

Hilbert Space of States & Unitary Representations
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Let |ψ〉 be a state with conjugate 〈ψ|,

J3 = J†3

J†± = J∓

and take the normalization

〈j|j〉

(i) For 2j ∈ N0, if we have

〈j|Jk1
+ Jk2
− |j〉 6= 0

then k1 = k2. Additionally

〈χ2j+1|χ2j+1〉 = 0

and

〈χ2j+1|Jk+Jk−|χ2j+1〉 = 0

so that the subrepresentation generated by |χ2j+1〉 yields only

null states.

We can therefore take our Hilber space of states to be the quo-

tient of our representation by the relations

|ψ〉 ∼ |ψ〉+ αJk−|χ2j+1〉

That is

H =
{
Jk−|j〉

}
k=0,...,2j

= 〈|j〉〉 / 〈|χ2j+1〉]〉

So we get a finite spin representation of su(2)50 50 Which is, in addition, unitary.

(ii) Let j > 0, 2j /∈ N0: We then get a non-finite representation of

su(2). Pick k = d2j + 1e, then

〈j|Jk+Jk−|j〉 = 〈j|Jk−1
+ Jk−1

− |j〉︸ ︷︷ ︸
>0

×k (2j + 1− k)︸ ︷︷ ︸
<0

We easily see that we get a negative norm state at level d2j + 1e,
giving us a non-unitary representation of su(2).

Observation. • Singular vectors give rise to unitary (finite dimen-

sional) representations of su(2).

• Highest weight representations without singular vectors yield (infi-

nite dimensional) non-unitary representations of su(2).
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3.2 Reducible Verma Modules & Singular Vectors

We explore highest weight representations of the Virasora algebra with

central charge c. Let |h〉 be a highest weight state:

Ln|h〉 = 0 for n > 0

L0|h〉 = h|h〉

The space of states will then be

L−{~k}|h〉

with inner product.

Definition. A singular vector is a descendant state |χ〉 with Ln|χ〉 =

0 for all n > 0, that this, |χ〉 is a highest weight state.

Observation. A singular vector and its descendants are orthogonal to

any other state.

Proof. Let |χ〉 be a singular vector at level N , so that it has an expan-

sion as

|χ〉 =
∑
~k

|~k|=N

c~kL−{~k}|h〉

Then the state

〈ψ|L−{~̀}|χ〉

can only be non-vanishing if ψ is a state at level N + |~̀|.
Let

|ψ〉 = L−{~m}|h〉

where |~m| = N + |~̀|. Then

〈ψ|L{vec`}|χ〉 = 〈h|L{~m}L−{~̀}|χ〉

= 〈h|
[
L{~m}, L−{~̀}

]
|χ〉 = 0

because [
L{~m}, L−{~̀}

]
=
∑
~s

D~sL~s

where |~s| = |~m| − |~̀| = N > 0.

Reducible Verma Module

Definition. A Verma module V (c, h) is reducibleif there is a singular

vector at some level N , ie

|χ〉 =
∑
~k

|~k|=N

c~kL−{~k}|h〉
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such that, for all n > 0, Ln|χ〉 = 0.

In this case, |χ〉 is a highest weight state generating a Verma sub-

module Vχ of V (c, h).

Remark. • |χ〉 is a primary state of conformal weight h + N , and it

is also a descendant state of |h〉

• Vχ is orthogonal to V (c, h) with respect to the defined inner prod-

uct.

• Let V (c, h) be a Verma Module with singular vectors |χi〉, then we

can construct irreducible51 Verma module M(c, h) by quotienting 51 See previous note.

out all Verma submodules

M(c, h) = V (c, h)/ ∼

where

|φ〉 ∼ |φ〉+ |ψ〉

for all |φ〉 ∈ V (c, h) and for all |ψ〉 ∈
⊕

i Vχi .

• M(c, h) are the building blocks of minimal models.

Singular Vectors & Negative Norm States at Low

Levels

Level 0 〈h|h〉 = 1: normalization condition.

Level 1 L−1|h〉 has norm

〈h|L1L−1|h〉 = 2h〈h|h〉 = 2h

so that the Gram matrix at level 1 is

M (1) = (〈h|L1L−1|h〉) = (2h)

That means we get a null state for h = 052, and a necessary condi- 52 That is, L−1|0〉 is a singular vector.

This null state corresponds to the
vacuum.

tion for unitary representations is that

h ≥ 0

Level 2 We now have two possible states

|ψ1,1〉 = L2
−1|h〉

|ψ2〉 − L−2|h〉

We can compute the 2× 2 Gram matrix at level 2,

M (2)(c, h) =

[
〈ψ1,1|ψ1,1〉 〈ψ1,1|ψ2〉
〈ψ2|ψ1,1〉 〈ψ2|ψ2〉

]

=

[
4h(2h+ 1) 6h

6h 4h+ 1
2c

]
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We compute that the trace of this matrix is

trM (2)(c, h) = 8h(h+ 1) +
1

2
c

and the determinant53 53 Known as the Kac determinant.

detM (2)(c, h) = 32(h− h1,1)(h− h1,2)(h− h2,1)

Each zero of this determinant will correspond to a singular vector.

the first,

h1,1, = 0

corresponds to the singular vector we have already found. The

other two

h1,2 =
1

16

(
5− c−

√
(1− c)(25− c)

)
h2,1 =

1

16

(
5− c+

√
(1− c)(25− c)

)
are new

Exercise. There are two singular vectors at level 2, |χ1,2〉 and |χ2,1〉
associated to h = h1,2 and h = h2,1 respectively.

A First Glance at Unitary Representations

We have singular vectors h = h1,1 = 0, and

h = h1,2, h2,1 ⇔ 1 =

(
4

3
h+

2

3

)(
−4

3
h− c

6
+

3

2

)

manifest non-unitary rep-

resentation (level 1)

h = 1
4

h = 5
8

c = 1

Unitary repr. still

possible from anal-

ysis up to level 2,

BUT: we expect

further constraints.

generic

points non-

unitary

c

h
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3.3 Kac Determinants

The Kac determinants are the determinants of the Gram Matrices,

and display a number of useful properties:

(i) A singular vector |χ〉 at level K yields null states at level N >

K:

L−{~k}|χ〉

with |~k| = N − K. Each singular vector at level K therefore

yields p(N −K)54 null states at level N . 54 Where p(m) is the number of

partitions of m. More precisely, it is
the number of distinct non-decreasing

sequences of natural numbers which

add up to m.

(ii) The order of the entries of the Gram determinants M (N)(c, h) at

level N in h is given by

• Since each element in L†
−{~k}

= L{~k} ‘commutes to L0’,

ordh

(
〈h|L†

−{~k}
L−{~k}|h〉

)
= length(~k)

• For ~k′ 6= ~k

ordh

(
〈h|L†

−{~k′}
L−{~k}|h〉

)
< length(~k)

Since now not all generators in L†
−{~k}

= L{~k} do not commute

to L0.

This tells us that the diagonal terms in the Gram matrix at level

N give rise to the leading contribution in h55: 55 The second step of this calculation
is a purely number theoretic identity,

not a physical principle.ordh

(
detM (N)(c, h)

)
=
∑
~k
|~k=N

length(~k)

=
∑
r,s∈Z
1≤r,s
r·s≤N

p(N − r · s)

(iii) At level N we have

# ((r, s) | 1 ≤ r, s and r · s = N)

new singular vectors, labelled by hr,s

We can compute a formula for the Kac determinants

detM (N)(c, h) = αN
∏
r,s≥1
r·s≤N

(h− hr,s(c))p(N−r·s)

where αN is some numerical (non-vanishing) constant independent of

h and c.
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Conjecture (Kac). 56 The values of hr,s and c for minimal models 56 Later proved by Feign and Fuchs.

are given by

hr,s =
((m+ 1)r −ms)2 − 1

4m(m+ 1)

c(m) = 1− 6

m(m+ 1)

Note. There are two possible solutions for the second equation

m1/2 = −1

2
±
√

25− c
1− c

However,

hr,s(m1(c)) = hs,r(m2(c))

We take the Convention that, for m real, we choose m ∈ R≥0

Unitary representations of Vir

We begin with a few observations

(i) For level 1, if

detM (1)(c, h) ≥ 0

then h ≥ 0

(ii) 〈h|L†−nL−n |h〉 = 2nh + c
12n(n2 − 1) > 0

This must hold for all n, which implies that c ≥ 0

(iii) If we consider the Kac determinants 1 < c < 25, we get that

m1/2 /∈ R, which implies that hr,s /∈ R for r 6= s. If r = s, then

hr,r < 0 for r >. Similarly, for c ≥ 25, hr,s < 0, so there are no

positive solutions for h.

Taken all together, this implies that detM (k) is non-vanishing

and positive definite for c > 1 and h ≥ 0 (see exercises).

(iv) In the region 0 ≤ c ≤ 1, h ≥ 0 we have the Kac determinant

96hr,s + 4(1 − c) =
(√

1 − c(r + s) ±
√

25 − c(r − s)
)2 ≥ 0

a) near c = 1, take c = 1 − 6ε. For r 6= s

hr,s(ε) =
1

4
(r − s)2 ± 1

4
(r2 − s2)

√
ε + O(ε)

For r = s

hr,r =
1 − c

24
(r2 − 1)

Diagrammatically, we can represent what we know so far about uni-

tary representations and minimal models in a somewhat finer version

of the graph from last section:
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c

h

h1,1

h2,2

h3,3

h1,2

h2,1

h3,1

h1,3

h3,2

h2,3

h4,2

h2,4

h4,3

h3,4

h1,4

1
8

1
3

5
8

1

35
24

1
4

1

1
0

1
2

7
10

m
=

2
m
in
.
m
o
d
el

m
=

3
m
in
.
m
o
d
el

m
=

4
m
in
.
m
o
d
el

unitary
representations

non-unitary
representations

non-unitary
representations

Returning to the region 0 ≤ c < 1, h ≥ 0,

• A generic point in this region gives rise to non-unitary representa-

tions only.

• Frienan, Qiu, Shenkar, in [8] found unitary representations on ‘first

intersections’. The idea is that the resulting singular vectors at

‘first intersections’ are sufficient to make the associated Verma

module Unitary. These ‘first intersections’ are given by precisely

the formulae from Kac’s conjecture above, where 1 ≤ r < m and

1 ≤ s < r

Note. • hr,s(m) = hm−r,m+1−s(m) for m ∈ Z≥2

• We denote the associated conformal families

[φr,s ] ≡ [φm−r,m+1−s ]
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We can codify the distinct conformal families with the use of

conformal diagrams. For example, when m = 2, we have c = 0

h1,2 = h1,2 = 057 or, diagrammatically 57 That is, this minimal model gives

the vacuum CFT.
r

s

φ1,1

φ1,2

In a more complicated case, we can take m = 3, so that c = 1
2 .

Looking at the diagram

r

s

φ1,1

φ2,1

φ1,2

φ2,2

φ1,3

φ2,3

we see that

[φ1,1] = [φ2,3], h1,1 = 0

[φ2,1] = [φ1,3], h2,1 =
1

2

[φ2,2] = [φ1,2], h2,2 =
1

16

The conformal diagrams list unitary represenations for a given

central charge c = c(m).

Goal: Construct, for a given c(m), unitary CFTs constructed frm

the conformal families associated to unitary representations of the

Virasora algebra for the given c(m). The resulting CFT’s are unitary

minimal models.

3.4 Fusion Rules

Singular vectors give rise to selection rules for non-vanishing three

point correlators.
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Example. We work at level 2 (cf Exercise 8.3). We have a singular

vector (
L−2 −

3

2(2h2,1 + 1)
L2
−1

)
|h2,1〉 = |χ2,1〉

with the null field

χ2,1(z) = φ
{2}
2,1 (z)− 3

2(2h2,1 + 1)
φ
{1,1}
2,1

where58 58 This holds because

φ
{1}
2,1 (w) =

∮
w

dz

2πi
R(T (z)φ2,1(w))

= ∂wφ2,1(w)

φ1,1
2,1(z) = ∂2

zφ2,1(z)

Since |χ2,1〉 is singular, we have

0 = 〈χ2,1(z)φ1(z1)φ2(z2)〉

=

(
L−2 −

3

2(2h2,1 + 1)
∂2
z

) C(z,z1,z2)︷ ︸︸ ︷
〈φ2,1(z)φ1(z1)φ2(z2)〉

where

C(z, z1, z2) = C(z − z1)h2−h1−h2,1(z1 − z2)h2,1−h1−h2(z2 − z)h1−h2,1−h2

(cf section 2.9). We then have the differential equation for C(z, z1, z2),

given by

0 =

(
h1

(z1 − z)2
− ∂z1
z1 − z

+
h2

(z2 − z)2
− ∂z2

(z2 − z)
− 3

2(2h2,1 + 1)
∂2
z

)
×C(z, z1, z2)

This gives us a constraint for C 6= 0:

2(h2,1 + 1)(h2,1 + 2h2 − h1) = 3(h2,1 − h1 + h2)(h2,1 − h1 + h2 + 1)

Inserting h2,1 = h2,1(m), h1 = hr,s(m) and h2 = hr′,s′(m) yields the

solution

r′ = r ± 1 s′ = s

So the selection rule is

〈φ2,1φr,sφr′,s′〉 6= 0 ⇒ r′ = r ± 1, s′ = s

〈φ1,2φr,sφr′,s′〉 6= 0 ⇒ r′ = r, s′ = s± 1

Fusion rules, on the other hand, summarize the conformal families

appearing in the OPE. For a CFT with states [φp], we can define the

fusion product :

[φp]× [φj ] =
∑

N `
kj [φ`]

where N `
kj ∈ Z≥0. For minimal models in particular, we can go fur-

ther, and say

N `
ij ∈ {0, 1}
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The three point selection rules at level 2 then tell us

N
(r′,s′)
(2,1),(r,s) = 0 for (r′, s′) 6= (r ± 1, s)

and

N
(r′,s′)
(1,2),(r,s) = 0 for (r′, s′) 6= (r, s± 1)

A dynamical analysis of minimal models yields59 for a unitary 59 See, for example, [6] or [9].

minimal model c = c(m)

[φ(r,s)]× [φ(r′,s′)] =

k=r+r′−1∑
k=1+|r−r′|

k+r+r′≡1 mod 2

`=s+s′−1∑
`=1+|s−s′|

`+s+s′≡1 mod 2

[
φ(k,`)

]

3.5 The Critical Ising Model

Recall the Ising model from the first lecture:

We have N ×N lattice of critical sites:

a

σ spin 1
2

These spins are equipped with a nearest neighbor interaction. The

energy for the system is given by

E({σ}) = −ε
∑

adjacent
lattice sites

σiσj

where σi ∈ ± 1
2 . There are ground states for the system: all states

having the same spin (ie either all | ↑〉 or all | ↓〉). The partition func-

tion is

Z =
∑
{σ}

exp (−E({σ})β)

where β = 1
T is the inverse temperature. The energy at a site is

εk =
ε

q

∑
i∈

{
nearest neigh.

of k

}σiσk
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We can take a continuum limit, a → 0, where Na = const. In this

case, we get

σ(z, z) spin field

ε(z, z) energy density field

The correlation functions for these fields will be given by

〈σ(z, z))σ(0, 0)〉 = lim
a→0

Na=const

Z−1
∑
{σ}

σkσ0e
−βE({σ})

〈ε(z, z))ε(0, 0)〉 = lim
a→0

Na=const

Z−1
∑
{σ}

εkε0e
−βE({σ})

The Ising model has a critical temperature Tcrit

0 Tcrit

T

〈0〉 = ±1 〈σ〉 ' 0

and the correlator goes as

〈σ(z, z)σ(0, 0)〉 ∼ e−|z|/ζ(T )

for T > Tcrit. Where ζ goes as:

Correlation

Length

ζ

T

Tcrit

At Tcrit, Onsager showed local conformal invariance, and computed

the correlators

〈σ(z, z)σ(0, 0)〉 =
1

|z|1/4

〈ε(z, z)ε(0, 0)〉 =
1

|z|2

with c = c = 1
2 .

He also computed the field content of the Ising model60 60 It is a spinless theory, ie h = h.
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σ(z, z) : (h, h) =

(
1

16
,

1

16

)
spin operator

ε(z, z) : (h, h) =

(
1

2
,

1

2

)
energy operator

1 : (h, h) = (0, 0) (in any CFT)

The m = 3 minimal model has c = 1
2 , and

[φ2,2] = [φ1,2] : h2,2 =
1

16

[φ1,1] = [φ2,3] : h1,1 = 0

[φ2,1] = [φ1,2] : h2,1 =
1

2

The physical ‘Ising minimal model’ includes the anti-holomorphic

sector to match with the operators

σ(z, z) = φ2,2(z)φ2,2(z)

ε(z, z) = φ2,1(z)φ2,1(z)

The fusion rules for the Ising model can be determined using the

order-disorder symmetry and the symmetry

σ 7→ −σ

This yields

[σ]× [σ] = [1] + [ε]

[σ]× [ε] = [σ]

[ε]× [ε][1]

We would like to determine the 3 point structure constants. From the

above, we have

Cσσ1 = Cεε1 = 1

We need to determine Cσσε by dynamics.

To do this, we first examine the leading terms in the Operator

Product

σ(z)σ(0) =
1

|z| 14
(1 + · · ·+ |z|Cσσεε(0, 0) + · · · ) (∗)

The m = 3 minimal model has a singular vector at level 2

|χ1,2〉 =

(
L−2 −

4, 3

L

2

−1

)
|h2,2〉

(|χ2,2〉 = |χ1,2〉)

Which implies that(
L−2 −

4

3
L2
−1

)
〈σ(z, z)φ1(z1, z1) · · ·φN (zN , zN )〉 = 0 (∗∗)
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We would like to determine the four-point correlation function

Gσσσσ = lim
z,z→∞

|z| 14 〈σ(z, z)σ(1, 1)σ(η, η)σ(0, 0)〉

the idea is to take (∗∗) with φ1 = φ2 = φ3 = σ and derive a differential

equation in η. We obtain the equation(
η(1− η)

d2

dη2
+ (

1

2
− η)

d

dη
+

1

16

)
fk(η) = 0

for k = 1, 261. The matrix element can be expressed in terms of these 61 That is, since this is a second order

differential equation (with singular
points at 0,1, and ∞) we have two

linearly independent solutions.

fk
62 as:

62 And the fk, which turn out to
satisfy the same differential equations.

Gσσσσ(η, η) =
1

|η(1− η)| 14

2∑
k,`=1

ck`fk(η)f `(η)

The solutions fk are given by

f1/2 =
(

1±
√

1− η
) 1

2

However, there are multiple branch cuts involved in this definition.

Since we want Gσσσσ to be single valued, there is only one choice we can

make for the constants ck`, which gives us

Gσσσσ(η, η) =
C

|η(1− η)| 14

(
|1 +

√
1− η|+ |1−

√
1− η|

)
Expanding around η = 0, we get (to leading order)

Gσσσσ =
C

|η| 14

(
2 +

1

2
|η|+ · · ·

)
(∗ ∗ ∗)

We can also obtain an expression for Gσσσσ using the OPE63, If we 63 Corresponding to the diagram

(1) σ σ (z)

(η) σ σ (0)

P = 1 · ε

apply (∗), we find that

Gσσσσ = lim
z,z→∞

|z| 14 〈σ(z, z)σ(1, 1)σ(η, η)σ(0, 0)〉

= lim
z,z→∞

|z| 14
|η| 14

(
〈σ(z,z)σ(1,1)〉
〈σ(z, zσ(1, 1)1〉+

+|η|Cσσε〈σ(z, z)σ(1, 1)ε(0, 0)〉+ · · ·
)

= lim
z,z→∞

|z| 14
|η| 14

(
1

|z − 1| 14
+ |η| C2

σσε

|z − 1| 18 + 1
8−1|z| 18 +1− 1

8

)
=

1

|η| 14
(
1 + |η|C2

σσε

)
Comparing this result with (∗ ∗ ∗), we get that

c =
1

2
Cσσε =

1

2

As a result, we have solved the Ising model by consistency, and the

CFT we have found completely determines the dynamics of the sys-

tem.
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Remark. Remarkably enough, we did not at any point need a La-

grangian of our theory!

3.6 Minimal Model Characters

The character of a (potentially reducible) Verma module V (c, h) is

defined to be64 64 Where #(N) is the number of

states at level N .

χV (c,h) = qh−
c
24

∞∑
N=0

#(N)qN = qh−
c
24

∞∏
N=1

(1− qN )−1

This last equality means that we can represent the character in

terms of the Euler function

φ(q) =

∞∏
n=1

(1− qN )

as

χV (c,h) =
qh−

c
24

φ(q)

Turning our attention to the characters of a unitary minimal model

representation M(c, h), we first note that

hr,−s(m)− hr,s(m) = h−r,s(m)− hr,s(m) = r · s

Additionaly, we have a ‘symmetry of indices’ so that

hr,s(m) = h−r,−s(m) = hr+m,s+(m+1)(m)

We can use these to find out more about our singular vectors from

first intersections
Singular vectors Level Conf. Weight

|χr,s〉 r · s hr,s + r · s = h−r,s = hm+r,m+1−s

|χm−r,m+1−s〉 (m− r)(m+ 1− s) hr,s + (m− r)(m+ 1− s) = hm−r,s−m−1

= hr,2(m+1)−s
The irreducible Verma module is therefore given by

M(c(m), hr,s(m)) = Vr,s/
(
Vr+m,−s+m+1 ∪ Vr,2(m+1)−s

)
To compute the character, we want to subtract contributions from

each submodule, but this leads to the possibility of double counting

sub-submodules, and so on. We therefore need to look at the structure

of submodules:

Vr,s = V−r,−s = Vr+m,s+m+1

Vr+m,m+1−s = V−r−m,s−m−1 = Vm−r,s+(m+1)

Vr,2(m+1)−s = V−r,s−2(m+1) = V2m−r,s

so we have
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Vr,2(m+1)−s ⊃ Vr+m,s−(m+1) ∪ V3m−r,(m+1)−s

Vr+m,m+1−s ⊃ Vr+2m,s ∪ V2m−r,−s

≡ ≡

These are the only common submodules, but they might have non-

trivial intersections.

Considering higher submodule chain structure gives us65 65 Where each arrow in the diagram

goes from a module to a submodule.

Vr+m,m+1−s Vr+2m,s · · · V
r+km,(−1)ks+

1−(−1)k

2 (m+1)

Vr,s

Vr,2(m+1)−s Vr,2(m+1)+s · · · V
r,k(m+1)+(−1)ks+

1−(−1)k

2 (m+1)

The character of M(c(m), hr,s(m)) thus becomes

χ(m)
r,s (q) =

q−c/2π

φ(q)

(
qhr,s +

∞∑
k=1

(−1)k ·
(
q
h
r+km,(−1)ks+

1−(−1)k

2

+ qr,k(m+1)+(−1)ks+
1−(−1)k

2 (m+1)

))
Or, if we define the functions

K(m)
r,s =

q−1/24

φ(q)

∑
k∈Z

q(2m(m+1)k+r(m+1)−ms)2/(4m(m+1))

then

χ(m)
r,s = K(m)

r,s −K
(m)
r,−s

Remark. χ
(m)
r,s are the generating functions for the (physical) states

at level N66. 66 Shifted by

qhr,s−c/24

4 Modular Invariance

Up to this point, we have studied CFTs on the conformal plane. We

now aim to study CFT’s on the 2-torus.

Motivation:

• Consistent 2d CFTs describing critical phenomena should be lo-

cally independent of the 2d geometry. In particular, it should be

independent of the quantization scheme (on the torus T 2).

• In String Theory, CFTs on Riemann surfaces form part of perturba-

tive string theory. T 267 gives rise to a 1 loop correction term. 67 A genus 1 Riemann surface.
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4.1 Partition Function

We can consider our map on the punctured plane from section 2.3,

and extend it to the torus:

H

z 7→ ζ = L
2π log(z)

H

p

identifying

boundaries

On T 2, our local symmetries are still the Virasora generators Ln.

Our global symmetries, however, are generated by L0 and L0
68. 68 So that the group of symmetries is

U(1)× U(1), the isometries of T 2 with
the flat metric.

Space-time Structure of the Torus

We can obtain the torus as a quotient of the complex plane by a

lattice generated by a pair of vectors ω1 and ω2.

Diagrammatically, we take the quotient of:
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Rez

Imz

H

P

ω1

ω1

ω2

ω2

to get:

H

P

Translations along the cycle are given by

exp

(
− a

|ω2|
(H · Imω2 − iPReω2)

)
Recall (cf. section 2.7) that we calculated the energy momentum

tensor for the cylinder:

Tcyl(ζ) =

(
2π

L

)2
(∑
n∈Z

Lne
−2πn/Lζ − c

24

)
This allows us to compute the operators H and P :

H =
1

2π

∫
ω1

(
2π

L

)2 (
L0 + L0 −

c

12

)
=

2π

L

(
L0 + L0 −

c

12

)
P =

1

2π

∫
ω1

(
2π

L

)2 (
L0 + L0

)
=

2π

L

(
L0 + L0

)
The partition function on T 2 is then given by

Z(ω1, ω2) = Tr (exp (− (HImω2 − iPReω2)))

Using the modular parameter τ = τ1 + iτ2 where

τ1 =
Reω2

ω1
=

Reω2

L

τ2 =
Imω2

ω1
=

Imω2

L
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the partition function takes the form

Z(τ) = Tr
(

exp 2πi
(
τ
(
L0 −

c

24

)
− τ

(
L0 −

c

24

)))
Or

Z(τ) = Tr
(
qL0− c

24 qL0− c
24

)
where q = exp(2πiτ).

Observation. The partition function only depends on the modular

parameter τ (that is, on the shape of the torus/the twisted gluing

condition). No dependence on the size of the torus exists, which is

consistent with the conformal property of CFTs.

4.2 Modular Invariance

So far, we have singled out a particular choice of lattice (1-cycles) on

T 2, however, we can think somewhat more generally. Consider the

picture:

Rez

Imz

H

P

ω1

ω1

ω2

ω2

ω1 + ω2

ω1 + ω2

ω2

ω1

It is not hard to see that the lattice Λ generated by ω1 and ω2 will

also be generated by ω1 + ω2 and ω1, and will be generated by ω1 + ω2

and ω2. Consequently, many different choices of initial cycles will give

us the same torus.

In general, if (ω2, ω1) defines the lattice Λ ⊂ C, then[
ω′2
ω′1

]
=

[
a b

c d

][
ω2

ω1

]

for [
a b

c d

]
∈ SL(2,Z)

describes the same lattice Λ.
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Under such a transformation, the modular parameter transforms as

τ ′ =
aτ + b

cτ + d

where69 69 The group

PSL(2,Z) = SL(2,Z)/(Z/2)

is the modular group of the torus.

[
a b

c d

]
∈ SL(2,Z)/(Z/2)

Partition functions of consistent CFTs must be modular invariant

(ie, independent of the quantization scheme) due to conformal invari-

ance. Therefore we require that

ZT
2

CFT (τ ′) = ZT
2

CFT (τ)

for τ ′ = aτ+b
cτ+d .
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