Conformal Field Theory

The following notes were taken from a course given at Universität Bonn during the summer semester 2016 by Dr. Hans Jockers
Contents

1. **Conformal Field Theories in d dimensions**
 1.1 Conformal group in dimension d ($d > 2$)
 1.2 Correlation function of Quantum Fields ($d > 2$)

2. **Conformal Field Theories in 2 Dimensions**
 2.1 Conformal Algebra in 2 Dimensions
 2.2 Correlation functions of (quasi-)primary fields
 2.3 Radial Quantization
 2.4 Operator product expansions
 2.5 Energy-momentum tensor and conformal Ward identities
 2.6 Examples of CFTs (Free CFTs)
 2.7 The central charge c
 2.8 The Hilbert Space of States
 2.9 Conformal Families and Operator Algebra
 2.10 Conformal Blacks & Crossing Symmetries

3. **Minimal Models**
 3.1 Warm-up: Representations of $\mathfrak{su}(2)$
 3.2 Reducible Verma Modules & Singular Vectors
 3.3 Kac Determinants
 3.4 Fusion Rules
 3.5 The Critical Ising Model
 3.6 Minimal Model Characters

4. **Modular Invariance**
 4.1 Partition Function
 4.2 Modular Invariance
Introduction

Aim: to understand CFT’s in 2d.

Why?

(A) Second order phase transitions in 2d systems (so-called critical phenomena). For example, the 2d Ising model. Take a 2d lattice of critical sites (in principal, this is assumed to be infinite):

\[
\begin{array}{cccccc}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & a & \cdot & \cdot & \cdot \\
\end{array}
\]

\(\sigma\) spin \(\frac{1}{2}\)

These spins are equipped with a nearest neighbor interaction. The energy for the system is given by

\[
E(\{\sigma\}) = -\epsilon \sum_{\text{adjacent lattice sites}} \sigma_i \sigma_j
\]

where \(\sigma_i \in \pm \frac{1}{2}\). There are ground states for the system: all states having the same spin (ie either all \(\uparrow\) or all \(\downarrow\)). The partition function is

\[
Z = \sum_{\{\sigma\}} \exp (-E(\{\sigma\})\beta)
\]

where \(\beta = \frac{1}{T}\) is the inverse temperature.

We can then compute the correlation functions:

\[
\langle \sigma_i, \sigma_j \rangle = \frac{1}{Z} \sum_{\{\sigma\}} \exp (-E(\{\sigma\})) \sigma_i \sigma_j \sim \exp \left(\frac{-|i-j|}{\zeta(T)} \right)
\]

where \(|i-j|\) is the distance from the site \(i\) to the site \(j\).

If \(T \to \infty\), then \(\zeta(T) \to 0\), so that \(\langle \sigma_i, \sigma_j \rangle \to 0\). If \(T \to T_c\), \(\zeta(T) \to \infty\), and the system reaches criticality.

At criticality, \(T = T_c\), we have that

\[
\langle \sigma_i, \sigma_j \rangle \sim \frac{1}{|i-j|^{\frac{5}{4}}}
\]

This theory is scale-invariant (for scales \(\gg a\)), and can be solved by use of a 2-dimensional CFT\(^1\)

\(^1\) Onsager won the ’68 Nobel prize in Chemistry for his solution of the 2d Ising model at criticality.
String theory provides other examples where CFT’s can be given meaning. It concerns itself with the time evolution of 1d objects ("strings"):

This time evolution is described by the Polyakov action, which is reparametrization invariant and Weyl invariant. Together these give us conformal invariance, which leads to a 2d CFT description of 2d worldsheets.

1 Conformal Field Theories in d dimensions

1.1 Conformal group in dimension d ($d > 2$)

Definition (Local Conformal Transformations). Let M, N be smooth d-dimensional manifolds with metrics g and h respectively. A local diffeomorphism of open sets

$$\phi : U \subset M \to \phi(U) \subset N$$

is called a local conformal transformation if

$$\phi^* h = \Lambda \cdot g$$

for a smooth scale function

$$\Lambda : U \to \mathbb{R}_{>0}$$

Remark. (local) conformal transformations preserve angles. Given two vectors $X, Y \in T_p M$, for $p \in U$, we then have

$$\cos \angle(\phi_* X, \phi_* Y) = \frac{h(\phi_* X, \phi_* Y)}{|\phi_* X|_h |\phi_* Y|_h}$$

$$= \frac{\phi^* h(X, Y)}{|X|_{\phi^* H} |Y|_{\phi^* H}}$$

$$= \frac{\Lambda g(X, Y)}{\sqrt{\Lambda} |X|_g \sqrt{\Lambda} |Y|_g}$$

$$= \cos \angle(X, Y)$$
Remark. • Conformal transformations define 'new' metrics on a space for $M = N$

\[\tilde{g} = \phi^* g = \Lambda \cdot g\]

for $\phi: M \to M$. This implies, with a little computation, that the Weyl Tensor remains invariant under conformal transformations, but the Riemann tensor does not.

We will, for now, work with conformally flat space $M = N = \mathbb{R}^d$, with the metric

\[\eta = \text{diag}(-1, \ldots, -1, 1, \ldots, 1)\]

where $n + m = d$. So we can write a conformal transformation $\phi: \mathbb{R}^d \to \mathbb{R}^d X^\mu \mapsto \phi^a(X^\mu)$, by requiring the relation

\[\eta_{\alpha\beta} \frac{\partial \phi^a}{\partial X^\mu} \frac{\partial \phi^b}{\partial X^\nu} = \Lambda \eta_{\mu,\nu}\]

• The 2d/3d Weyl tensor always vanishes on any 2d/3d manifold that is locally conformally flat.

• In 2d, we can see from cartography that we can map a globe minus a point to a sheet of paper by preserving angles.

We will now consider an infinitesimal transformation $X^\mu \mapsto X^\mu + \epsilon^\mu(X)$. Which gives us

\[ds^2 \to ds^2 + (\partial_\mu \epsilon_\nu + \partial_\nu \epsilon_\mu) \, dX^\mu dX^\nu\]

as the transformation of line elements\(^3\)

This transformation is conformal if

\[\partial_\mu \epsilon_\nu + \partial_\nu \epsilon_\mu = \eta_{\mu\nu} C\]

By taking the trace of this relation, we can find that

\[\partial_\mu \epsilon_\nu + \partial_\nu \epsilon_\mu = \frac{2}{d} \text{div}(\epsilon) \eta_{\mu\nu}\]

(\(\ast\))

Furthermore

\[\partial_\mu \partial_\nu (\text{div}\epsilon) = \partial_\mu \partial_\nu (\partial_\rho \epsilon_\rho + \partial_\rho \epsilon_\nu - \partial_\rho \epsilon_\mu) = \frac{2}{d} \partial_\mu \partial_\nu (\text{div}\epsilon) - \square \partial_\mu \epsilon_\nu\]

Since this expression is symmetric under the interchange of μ and ν, we can simplify to

\[\frac{2}{d} \partial_\mu \partial_\nu (\text{div}\epsilon) - \frac{1}{2} \square (\partial_\mu \epsilon_\nu + \partial_\nu \epsilon_\mu)\]

and, applying (\(\ast\)) again, we get

\[(\eta_{\mu\nu} \square + (d - 2) \partial_\mu \partial_\nu)(\text{div}\epsilon) = 0\]
Taking the trace, we then get

\[\Box (\text{div} \epsilon) = 0 \]

Ansatz: For the infinitesimal transformations:

\[\partial_\mu \partial_\nu (\text{div} \epsilon) = 0 \Rightarrow \text{div} \epsilon = A + B_\mu X^\mu \]

Which implies

\[\epsilon_\mu = a_\mu + b_\mu X^\nu + C_{\mu \nu \rho} X^\nu X^\rho \]

where \(C_{\mu \nu \rho} = C_{\nu \mu \rho} \)

From this, we can classify infinitesimal conformal transformations:

(i) \(\epsilon_\mu = a_\mu \), called **translations**

(ii) \(\epsilon_\mu = b_\mu X^\nu \). In \((*)\), we get:

\[b_\mu + b_\mu = \frac{2}{a} \eta_\nu \eta^\sigma (b_\mu \eta^\sigma) \]

a) \(\epsilon_\mu = w_\mu X^\nu \), where \(w_\mu = -w_\mu \), which we call **rotations**.

b) \(\epsilon_\mu = \lambda \cdot \eta_\mu X^\nu = \lambda X^\nu \) which we call **dilations**.

(iii) \(\epsilon_\mu = C_{\mu \nu \rho} X^\nu X^\rho \). In \((*)\), we get:

\[C_{\mu \nu \rho} = \eta_\mu b_\rho + \eta_\nu b_\rho - \eta_\rho b_\mu \]

so that

\[\epsilon_\mu = 2(b \cdot X) X_\mu - b_\mu |X|^2 \]

which we call **special conformal transformations (SCTs)**.

By integrating these infinitesimal versions, we can obtain expressions for finite conformal transformations:

(i) **Translations:**

\[\tilde{X}^\mu = X^\mu + a^\mu \]

(ii) **Rotations:**

\[\tilde{X}^\mu = M^\mu_\nu X^\nu \]

for \(M^\mu_\nu \in SO(n, m) \).

(iii) **Dilations:**

\[\tilde{X}^\mu = \Lambda X^\mu \]

(iv) **SCTs:**

\[\tilde{X}^\mu = \frac{X^\mu - b^\mu |X|^2}{1 - 2b_\mu X^\mu + |b|^2 |X|^2} \]
As it happens, the conformal group acting on X^μ is precisely $SO(n+1,m+1)$

Interlude: Projective space $\mathbb{RP}^{d+1} = \mathbb{R}^{d+2} \setminus \{0\}/\mathbb{R}^*$.

Consider the map

$$\iota: \mathbb{R}^d \to \mathbb{RP}^{d+1}$$

$$X^\mu \mapsto \left[\frac{1}{2} (1 + |X|^2) : X^1 : \cdots : X^d : \frac{1}{2} (1 - |X|^2) \right] =: X_P$$

Properties:

(i) $\iota(\mathbb{R})$ is on the projective light cone:

$$\{0 = \eta_P(X_P, X_P)\} \subset \mathbb{RP}^{d+1}$$

where

$$\eta_P = \text{diag}(-1, \ldots, -1, 1, \ldots, 1)_{n+1 \atop m+1}$$

(ii) $SO(n+1,m+1)$ acts on \mathbb{RP}^{d+1} in the canonical way

$$X_P^A = M_P^{AB} X_P^B$$

where

$$M_P^{AB} \in SO(n+1,m+1)$$

(iii) Transformations in $SO(n+1,m+1)$ induce the following conformal transformations on \mathbb{R}^d

a) Rotations:

$$M_B^A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & M^\mu_\nu & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

with $M^\mu_\nu \in SO(n,m) \subset SO(n+1,m+1)$.

Poincaré Subgroup

b) Translations ($X^\mu \to X^\mu + a^\mu$)

$$M_B^A = \begin{pmatrix} 1 + \frac{1}{2} |a| & -a^\mu & -\frac{1}{2} |a| \\ a_\mu & 1 & -a^\mu \\ -\frac{1}{2} |a| & a^\mu & 1 - \frac{1}{2} |a| \end{pmatrix}$$

c) Dilations ($X^\mu \to r X^\mu$)

$$M_B^A = \begin{pmatrix} 1 + \frac{r^2}{2r} & 0 & \frac{1-r^2}{2r} \\ 0 & 1 & 0 \\ \frac{1-r^2}{2r} & 0 & 1 + \frac{r^2}{2r} \end{pmatrix}$$

d) SCT’s ($X^\mu \to \frac{X^\mu - b^\mu |X|^2}{1 - \frac{2r}{|X|^2} b^\mu X^\mu}$)

$$M_B^A = \begin{pmatrix} 1 + \frac{1}{2} |b| & -b^\mu & -\frac{1}{2} |b| \\ -b_\mu & 1 & b_\mu \\ 1 + \frac{1}{2} |b| & -b^\mu & 1 - \frac{1}{2} |b| \end{pmatrix}$$
Conformal Invariants

For points $x_i \in \mathbb{R}^d$

- If we require translational and rotational invariance, we can take as our invariant
 \[|x_1 - x_2|\]

- If we additionally require scale invariance, it suffices to add another point:
 \[\frac{|x_1 - x_2|}{|x_1 - x_3|}\]

- Applying an SCT, we get
 \[|x_1 - x_2| \rightarrow (1 - 2bx_1 + |b|^2|x_1|^2)^{-\frac{1}{2}} \left(1 - 2bx_2 + |b|^2|x_2|^2\right)^{-\frac{1}{2}} |x_1 - x_2|\]

Therefore, conformal invariants are anharmonic ratios5:
\[
\frac{|x_1 - x_2||x_3 - x_4|}{|x_1 - x_3||x_2 - x_4|}
\]

Remark. There are a total of $\frac{N(N - 3)}{2}$ distinct anharmonic invariants for a set of N points6.

1.2 Correlation function of Quantum Fields ($d > 2$)

We take the Euclidean signature in d dimensions, so that our conformal group is $SO(1, d + 1)$. We then get the commutation relations

\[[J_{AB}, J_{CD}] = i (\eta_{AB} J_{BC} + \eta_{BC} J_{AB} - \eta_{AC} J_{BD} - \eta_{BD} J_{AC}) \]

And $J_{AB} = -J_{BA}$,

\[\eta = \text{diag}(-1, 1, 1, \ldots, 1) \]

and A, B, C, D range through $-1, 0, 1, 2, \ldots, D$. For the Conformal Generators7:

- $L_{\mu\nu} = J_{\mu\nu}$ Rotations
- $P_\mu = J_{-1,\mu}$ Translations
- $D = J_{-1,0}$ Dilations
- $K_\mu = -J_{-1,\mu} + J_{0,\mu}$ SCTs

5 Also called cross ratios
6 Warning: There can be complicated algebraic relations among such invariants.
7 μ, ν are assumed to be strictly positive in the definitions below.
The **Conformal algebra** is then the Poincaré algebra plus the commutation relations

\[
\begin{align*}
[D, P_\mu] &= iP_\mu \\
[D, K_\mu] &= -iK + \mu \\
[D, L_{\mu,\nu}] &= 0 \\
[K_\mu, P_\nu] &= 2i(\eta_{\mu\nu}D - L_{\mu\nu})
\end{align*}
\]

From these algebraic definitions, we can then get conformal transformations, e.g:

- \(\exp(-ib^K K_\mu) \in SO(1, d + 1) \) SCT
- \(\exp(-ia^\mu P_\mu) \in SO(1, d + 1) \) Translations
- \(\exp(-i\lambda D) \in SO(1, d + 1) \) Dilation
- \(\exp(-i\frac{\omega^{\mu,\nu}}{2} L_{\mu\nu}) \in SO(1, d + 1) \) Rotation

Quantum Fields as ‘∞-dimensional representations’ of conformal group

Example. We can think of functions \(\{g\} \) as representations of \(SO(1, d + 1) \) via the map

\[
\rho_g : SO(1, d + 1) \times \text{Maps}(\mathbb{R}^d \to \mathbb{R}) \to \text{Maps}(\mathbb{R}^d \to \mathbb{R}),
\]

\[
(\Lambda, g) \mapsto g \circ f_{\Lambda^{-1}}
\]

where

\[
\begin{align*}
f_\Lambda : x^\mu &\mapsto f \circ \Lambda(x^\mu) \\
f_{\Lambda^{-1}} : x^\mu &\mapsto f \circ \Lambda^{-1}(x^\mu)
\end{align*}
\]

We then have the infinitesimal generators of the conformal group in the representation \(\rho_g \)

\[
\begin{align*}
f_\Lambda : x^\mu &\mapsto x^\mu + \epsilon^\mu(x) \\
f_{\Lambda^{-1}} : x^\mu &\mapsto x^\mu - \epsilon^\mu(x)
\end{align*}
\]

Example. As an example, we can look at the infinitesimal dilation lambda \(\lambda \)

\[
f_{\lambda} : x^\mu \mapsto x^\mu + \lambda x^\mu
\]

So we then have

\[
\rho_g(\lambda g)(x^\mu) = g(x^\mu - \epsilon^\mu(x)) = g(x^\mu) - \lambda x^\mu \frac{\partial g}{\partial x^\mu} = e^{-i\lambda D} g(x^\mu)
\]

which implies \(D_\mu = -ix^\mu d_\mu \)
In a similar fashion, we can find that
\[P_\mu = -i \partial_\mu \]
\[L_{\mu\nu} = i(x_\mu \partial_\nu - x_\nu \partial_\mu) \]
\[K_\mu = -i(2x_\mu x_\nu \partial_\nu - |x|^2 \partial_\mu) \]

A Quantum Field \(\psi \) is then given by \(\phi^A \) such that, for a finite dimensional vector space \(V \),
\[\rho_\psi : SO(1, d + 1) \times \text{Maps}(\mathbb{R}^d \to V) \to \text{Maps}(\mathbb{R}^d \to V) \]
\[(\Lambda, \psi^A) \mapsto \rho_\psi(A)_B^B \psi^A \circ f_{\Lambda^{-1}} \]

Quasi-Primary Fields We consider a field \(\psi(x) \) at \(x = 0 \). We then have
\[L_{\mu\nu}\psi(0) = S_{\mu\nu}\psi(0) \]
\[D\psi(0) = -i\Delta\psi(0) \]
\[K_\mu\psi(0) = -K_\mu\psi(0) \]

We make the further assumption that we have an irreducible representation of the Lorentz group, to get
\[[\Delta, S_{\mu\nu}] = 0 \]
Which, by Schur’s lemma, implies \(\Delta \sim 1 \), ie a number, which we will call the scaling dimension. We also get
\[[\Delta, K_\mu] = -K_\mu \]
so that \(K_\mu = 0 \)

We can also compute the ‘scaling dimension at other locations’
\[D\psi(x^\mu) = D e^{-ix^\mu P_\mu} \psi(0) \]
\[= \left(\left[D, e^{-ix^\mu P_\mu} \right] + e^{-ix^\mu P_\mu} D \right) \psi(0) \]
\[\equiv [D, P_\mu] = iP_\mu e^{-ix^\mu P_\mu} (x^\mu P_\mu) - i\Delta e^{-ix^\mu P_\mu} \psi(0) \]
\[= (X^\mu P_\mu - i\Delta)\psi(x^\mu) \]

If we assume our field is spinless, ie \(S_{\mu\nu} = 0 \), then the field is characterized entirely by the scaling dimension \(D \). We can then derive the finite transformation behavior of a spinless field \(\phi(x) \).
\[\phi(x^\mu) \xrightarrow{\Lambda} \tilde{\phi}(\tilde{x}^\mu) \]
\[\frac{\partial \tilde{x}^\mu}{\partial x^\nu} \frac{\Delta^d}{d!} \phi(x^\mu) \]
\[x^\mu \mapsto \tilde{x}^\mu = f_\Lambda(x^\mu) \]
we call such fields **Quasi-Primary Scalar Fields**.
Correlation Functions of Quasi-Primary Fields

From a CFT, we get the path integral measure

$$[d\Phi] e^{S[\Phi]}$$

Where \(\Phi \) is the fields in our theory, and \(S \) is the action functional. The correlation function is then

$$\langle \phi_1(x_1) \cdots \phi_N(x_N) \rangle = \frac{1}{Z} \int [d\Phi] e^{-S[\Phi]} \Phi_1(x_1) \cdots \Phi_N(x_N)$$

where

$$Z = \int [d\Phi] e^{-S[\Phi]}$$

Applying a conformal transformation,

$$\langle \phi_1(\tilde{x}_1) \cdots \phi_N(\tilde{x}_N) \rangle = \frac{1}{Z} \int [d\tilde{\Phi}] e^{-S[\tilde{\Phi}]} \tilde{\Phi}_1(\tilde{x}_1) \cdots \tilde{\Phi}_N(\tilde{x}_N)$$

which implies

$$\langle \phi_1(\tilde{x}_1) \cdots \phi_N(\tilde{x}_N) \rangle = \left| \frac{\partial \tilde{x}_1^\mu}{\partial x_1^\nu} \right|^{-\Delta_1/d} \cdots \left| \frac{\partial \tilde{x}_N^\mu}{\partial x_N^\nu} \right|^{-\Delta_N/d} \langle \phi_1(x_1) \cdots \phi_N(x_N) \rangle$$

2-point Correlation Functions

Take two fields \(\phi_1 \) and \(\phi_2 \). From the requisite symmetries, we can deduce some of the form of the correlation function

- Rotation + Translation invariance implies
 $$\langle \phi_1(x_1)\phi_2(x_2) \rangle = f(|x_1 - x_2|)$$

- Dilation \(\tilde{x}^\mu \mapsto \lambda x^\mu \) invariance implies
 $$\frac{\langle \phi_1(\tilde{x}_1)\phi_2(\tilde{x}_2) \rangle}{\langle \phi_1(x_1)\phi_2(x_2) \rangle} = \lambda^{-\Delta_1-\Delta_2}$$

Together, these computations show us that

$$\langle \phi_1(x_1)\phi_2(x_2) \rangle = \frac{C_1}{|x_1 - x_2|^{\Delta_1+\Delta_2}}$$

Now applying invariance under SCTs we notice that

$$\left| \frac{\partial \tilde{x}_k}{\partial x_\mu} \right| = \frac{1}{(1 - 2b_\mu x_\mu^k + |b|^2|x_k|^2)^d} =: S_k(b^\mu)$$

and then compute

$$\langle \phi_1(\tilde{x}_1)\phi_2(\tilde{x}_2) \rangle = \frac{1}{S_1(b_\mu)^{\Delta_1} S_2(b_\mu)^{\Delta_2}} \langle \phi_1(x_1)\phi_2(x_2) \rangle \cdot \frac{C_{12}}{C_1^{\Delta_1} C_2^{\Delta_2} |x_1 - x_2|^{\Delta_1+\Delta_2}}$$
but, on the other hand
\[
\langle \phi_1(\tilde{x}_1)\phi_2(\tilde{x}_2) \rangle = \frac{C_{12}}{|\tilde{x}_1 - \tilde{x}_2|^{\Delta_1 + \Delta_2}}
\]
\[
= \frac{C_{12}}{S_1^{(\Delta_1 + \Delta_2)/2}S_2^{(\Delta_1 + \Delta_2)/2}|x_1 - x_2|^{\Delta_1 - \Delta_2}}
\]
Hence \(C_{12} \neq 0\) only if
\[
\frac{1}{2}(\Delta_1 + \Delta_2) = \Delta_1 = \Delta_2
\]
or, more precisely
\[
\langle \phi_1(x_1)\phi_2(x_2) \rangle = \begin{cases}
\frac{C_{12}}{|x_1 - x_2|^{\Delta_1 + \Delta_2}} & \Delta_1 = \Delta_2 = \Delta \\
0 & \text{else}
\end{cases}
\]

One can perform similar simplifications for 3 and 4 point correlation functions. It is left as an exercise to see

\[
\langle \phi_1(x_1)\phi_2(x_2)\phi_3(x_3) \rangle = \frac{C_{123}}{|x_1 - x_2|^{\Delta_1 + \Delta_2 - \Delta_3}|x_1 - x_3|^{\Delta_1 + \Delta_3 - \Delta_2}|x_2 - x_3|^{\Delta_2 + \Delta_3 - \Delta_1}}
\]
and
\[
\langle \phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4) \rangle = f(\text{anh. ratios}) \prod_{1 \leq k < \ell \leq 4} |x_k - x_\ell|^{\Delta/3 - \Delta_k - \Delta_\ell}
\]
where \(\Delta = \sum_i \Delta_i\).

2 Conformal Field Theories in 2 Dimensions

2.1 Conformal Algebra in 2 Dimensions

Local conformal transformations in \(\mathbb{R}^2\) with metric \(\delta_{\alpha\beta} = \eta_{\alpha\beta}\) are given by differentiable maps

\[
\varphi: U \subset \mathbb{R}^2 \rightarrow V \subset \mathbb{R}^2
\]
where

\[
\varphi^* \eta = \Lambda \eta, \quad \Lambda : U \mathbb{R} > 0
\]
This implies
\[
\eta_{\alpha\beta} \frac{\partial \varphi^\alpha}{\partial x^\mu} \frac{\partial \varphi^\beta}{\partial x^\nu} = \Lambda \eta_{\mu\nu}
\]
where we assume the transformation is orientation preserving, ie
\[
\left| \frac{\partial \varphi(x^1, x^2)}{\partial (x^1, x^2)} \right| > 0
\]
We then obtain from η_{11} and η_{22}

$$\Lambda = (\partial_1 \varphi_1)^2 + (\partial_2 \varphi_2)^2 = (\partial_2 \varphi_1)^2 + (\partial_2 \varphi_2)^2$$

and from η_{12} and η_{21}

$$0 = (\partial_1 \varphi_1)(\partial_2 \varphi_1) + (\partial_1 \varphi_2)(\partial_2 \varphi_2)$$

We can combine these two equations into a single complex equation to get

$$((\partial_1 \varphi_1) - i(\partial_2 \varphi_2))^2 = ((\partial_2 \varphi_2) + i(\partial_1 \varphi_2))^2$$

or, equivalently

$$\partial_1 \varphi_1 - i\partial_2 \varphi_1 = \pm(\partial_2 \varphi_2 + i\partial_1 \varphi_2)$$

We then get solutions

\[
\begin{array}{c|c}
\text{Orientation Preserving} & \text{Orientation Reversing} \\
\hline
(+): & (-): \\
\partial_1 \varphi_1 = \partial_2 \varphi_2 & \partial_1 \varphi_1 = -\partial_2 \varphi_2 \\
\partial_2 \varphi_1 = -\partial_1 \varphi_2 & \partial_1 \varphi_2 = \partial_2 \varphi_1 \\
\frac{\partial \varphi(x^1, x^2)}{\partial (x^1, x^2)} > 0 & \frac{\partial \varphi(x^1, x^2)}{\partial (x^1, x^2)} < 0
\end{array}
\]

Metric in homomorphic coordinates

The (+) solution gives precisely the Cauchy-Riemann Differential Equation, so that local conformal transformations in complex coordinates $z = x^1 + ix^2$ are local biholomorphic functions $\varphi(z)$.

In terms of the holomorphic and antiholomorphic coordinates z, \bar{z}, we can rewrite the metric

$$ds^2 = (dx^1)^2 + (dx^2)^2 = dzd\bar{z}$$

where $dz = dx + idy$ and $d\bar{z} = dx - idy$. Under biholomorphic mappings, we get

$$dz \mapsto \frac{\partial \varphi}{\partial z}dz, \quad d\bar{z} \mapsto \frac{\partial \varphi}{\partial \bar{z}}d\bar{z}$$

We then have that the metric transforms as

$$ds^2 = dzd\bar{z} \mapsto \left| \frac{\partial \varphi}{\partial z} \right|^2 dzd\bar{z}$$

so that

$$\Delta(z, \bar{z}) = \left| \frac{\partial \varphi}{\partial z} \right|^2$$

We thereby see that local conformal transformations are local holomorphic coordinate changes.

Remark.
- Often we regard z and \bar{z} as independent coordinates, and enhance $(x^1, x^2) \in \mathbb{R}^2$ to complex coordinates $(x^1, x^2) \in \mathbb{C}^2$.
- ‘Physical Condition’. We impose $\bar{z} = z^*$, the complex conjugate.
Conformal Algebra

If we take an infinitesimal conformal transformation \(z \mapsto \tilde{z} = z + \epsilon(z) \), and take a Laurent expansion

\[
\epsilon(z) = \sum_{n=-\infty}^{\infty} c_n z^{n+1}
\]

where the \(c_n \) are assumed to be infinitesimal, we can compute the action on functions \(\varphi(z, \bar{z}) \in \text{Map}(\mathbb{C} \to \mathbb{R}) \).

\[
e^{c_n \ell_n + \bar{c}_n \bar{\ell}_n} \varphi(z, \bar{z}) = \varphi(z - \epsilon(z), \bar{z} - \bar{\epsilon}(\bar{z}))
\]

which is equivalent to

\[
(1 + c_n \ell_n + \bar{c}_n \bar{\ell}_n) \varphi(z, \bar{z}) = (1 - \epsilon(z) \partial_z - \bar{\epsilon}(\bar{z}) \partial_{\bar{z}}) \varphi(z, \bar{z})
\]

So the generators of the conformal algebra (in ‘function representation’) are

\[
\ell_n = -z^{n+1} \partial_z, \quad \bar{\ell}_n = -\bar{z}^{n+1} \partial_{\bar{z}}
\]

The commutation relations these generators satisfy (Witt Algebra relations)

\[
[\ell_n, \ell_m] = (n-m)\ell_{n+m}
\]

\[
[\bar{\ell}_n, \bar{\ell}_m] = (n-m)\bar{\ell}_{n+m}
\]

Remark. • Treating \(z \) and \(\bar{z} \) as independent variables yields two copies of the Witt Algebra \(A \oplus \bar{A} \).

• Imposing the ‘physical condition’ leaves us with the subalgebra of \(A \oplus \bar{A} \) generated by \(\ell_n + \bar{\ell}_n \) and \(i(\ell_n - \bar{\ell}_n) \) for all \(n \)

• For a Quantum Theory, we need a central extension of the Witt Algebra, which is the so-called Virasoro Algebra.

Global Conformal Transformations

On \(S^2 = \mathbb{C} \cup \{\infty\} \), global holomorphic transformations are generated by global vector fields.

We take as an Ansatz

\[
v(z) = -\sum_{n=-1}^{\infty} a_n \ell_n
\]

\[
= \sum_{n=-1}^{\infty} a_n z^{n+1} \partial_z
\]

\[
z \mapsto w = \frac{z}{\partial_z} w = \sum_{n=-1}^{\infty} a_n w^{-n+1} \partial_w
\]

With a global vector field

\[
v(z) = -(a_{-1} \ell_{-1} + a_0 \ell_0 + a_1 \ell_1)
\]

We then have generators (applying the physical condition)
Finite Global Conformal Transformations

For $S^2 = \mathbb{C} \cup \{\infty\}$, $a, b, c, d \in \mathbb{C}$, $ad - bc = 1$ we have

$$
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix} \in \text{SL}(2, \mathbb{C})/\mathbb{Z}_2 = \text{SO}^+(1, 3)
$$

which is the conformal group in $d = 2$ dimensions. From this, we have the group of Möbius transformations of the sphere

$$z \mapsto \frac{az + b}{cz + d}$$

Here, our generators are

• Translations

$$
\begin{bmatrix} 1 & \tilde{a} \\ \tilde{a} & 1 \end{bmatrix}
$$

• Dilations

$$
\begin{bmatrix} \lambda^{1/2} \\ \lambda^{-1/2} \end{bmatrix}
$$

• Rotations

$$
\begin{bmatrix} e^{i\frac{\theta}{2}} \\ e^{-i\frac{\theta}{2}} \end{bmatrix}
$$

• SCT

$$
\begin{bmatrix} 1 & 0 \\ \tilde{b} & 1 \end{bmatrix}
$$

Remark. • For four points z_1, \ldots, z_4, we can define invariant 4-point cross ratios

$$
\eta = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_3)(z_2 - z_4)}
$$

There are relations among these cross ratios. In fact, for four points, there is only one independent cross ratio. This can be seen by noting that there is always a transformation in $\text{SL}(2, \mathbb{C})/\mathbb{Z}_2$ which maps

$$
\begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} \mapsto \begin{bmatrix} \infty \\ 1 \\ \eta \\ 0 \end{bmatrix}
$$
Physical States are characterized by the eigenvalues of the dilation operator $\ell_0 + \bar{\ell}_0$ and the rotation operator $i\ell_0 - i\bar{\ell}_0$. These can be written in terms of the quantities h, h^{10}

$$\ell_0 |\psi\rangle = h |\psi\rangle \quad \bar{\ell}_0 |\psi\rangle = \bar{h} |\psi\rangle$$

The scaling dimension is the $\Delta = h + \bar{h}$ (the dilation operator eigenvalue) and the spin11 is $s = h - \bar{h}$ (the ‘rotation operator eigenvalue’).

2.2 Correlation functions of (quasi-)primary fields

Definition. A field $\phi(z, \bar{z})$ of conformal weight (h, \bar{h}) is a primary field if it transforms under local conformal transformations

$$z \mapsto \phi(z) = \tilde{z}$$

locally as

$$\phi(z, \bar{z}) \mapsto \tilde{\phi}(\tilde{z}, \tilde{\bar{z}}) = \left(\frac{\partial \phi}{\partial z}\right)^{-h} \left(\frac{\partial \bar{\phi}}{\partial \bar{z}}\right)^{-\bar{h}} \phi(z, \bar{z})$$

(\star)

Remark. • A Field is called a quasi-primary field if (\star) holds for global conformal transformations12

• A field with a different transformation behavior is called a secondary field.

If we take an infinitesimal variation of a primary field

$$\tilde{z} = z + \epsilon(z)$$
$$\tilde{\bar{z}} = \bar{z} + \bar{\epsilon}\bar{(z)}$$

We can compute

$$\delta_{\epsilon, \bar{\epsilon}} \phi(z, \bar{z}) = \tilde{\phi}(\tilde{z}, \tilde{\bar{z}}) - \phi(z, \bar{z})$$
$$= \tilde{\phi}(z - \epsilon(z), \bar{z} + \bar{\epsilon}(\bar{z})) - \phi(z, \bar{z})$$

Taylor expanding to first order we get

$$\delta_{\epsilon, \bar{\epsilon}} \phi(z, \bar{z}) = \tilde{\phi}(z, \bar{z}) - \epsilon(z)\partial_z \tilde{\phi} - \bar{\epsilon}(\bar{z})\partial_{\bar{z}} \tilde{\phi} - \phi(z, \bar{z})$$

$$= \left[(1 + \partial_z \epsilon(z))^{-h}(1 + \partial_{\bar{z}} \bar{\epsilon}(\bar{z}))^{-\bar{h}} - \epsilon(z)\partial_z - \bar{\epsilon}(\bar{z})\partial_{\bar{z}} - 1\right] \phi(z, \bar{z})$$

which then becomes

$$\delta_{\epsilon, \bar{\epsilon}} \phi(z, \bar{z}) = \left[-(h(\partial_z \epsilon(z)) + \epsilon(z)\partial_z) - (\bar{h}(\partial_{\bar{z}} \bar{\epsilon}(\bar{z})) + \bar{\epsilon}(\bar{z})\partial_{\bar{z}})\right] \times \phi(z, \bar{z})$$

(\star\star)
2-POINT CORRELATION FUNCTION OF QUASI-PRIMARY FIELDS

We consider a quasi-primary field as above\(^{13}\). We can then compute

\[
0 = \delta_{r,T}(\phi_1(z_1, \tau_1)\phi_2(z_2, \tau_2)) \\
= \langle \delta_{r,T}(\phi_1(z_1, \tau_1)\phi_2(z_2, \tau_2)) + (\phi_1(z_1, \tau_1)\delta_{r,T}(\phi_2(z_2, \tau_2)) \rangle
\]

We can write our infinitesimal conformal transformations as

\[
\epsilon = c_{-1} + c_0 z + c_1 z^2 \\
\tau = \tau + c_0 \tau + c_1 \tau^2
\]

for these \(\epsilon\) and \(\tau\), (***) holds for any quasi-primary field. This implies that

\[
0 = [h_1(\partial_{z_1} \epsilon(z_1)) + \epsilon(z_1)\partial_{z_1} + h_2(\partial_{z_2} \epsilon(z_2)) + \epsilon(z_2)\partial_{z_2} + c] \times \langle \phi_1 \phi_2 \rangle
\]

We can then use the coefficients of

\[
\epsilon(z) = c_{-1} + c_0 z + c_1 z^2
\]

\(c_{-1}\): We have \((\partial_{z_1} + \partial_{z_2})\langle \phi_1 \phi_2 \rangle = 0\) so

\[
\langle \phi_1 \phi_2 \rangle = c(z_1 - z_2)
\]

\(c_0\): We have

\[
(h_1 + h_2 + z_1 \partial_{z_1} + z_2 \partial_{z_2})\langle \phi_1 \phi_2 \rangle = 0
\]

so, substituting our first result, we get

\[
(h_1 + h_2)c(z_1 - z_2) + (z_1 - z_2)c'(z_1 - z_2) = 0
\]

and solving this differential equation:

\[
c(z_1 - z_2) = \frac{C_{12}}{(z_1 - z_2)^{h_1 + h_2}}
\]

\(c_1\): We have

\[
(2h_1 z_1 + 2h_2 z_2 + z_1^2 \partial_{z_1} + z_2^2 \partial_{z_2})\langle \phi_1 \phi_2 \rangle = 0
\]

substituting in

\[
(2h_1 z_1 + 2h_2 z_2)\frac{C_{12}}{(z_1 - z_2)^{h_1 + h_2}} - (h_1 + h_2)(z_1^2 - z_2^2)\frac{C_{12}}{(z_1 - z_2)^{h_1 + h_2 + 1}} = 0
\]

so

\[
\frac{C_{12}(h_1 - h_2)}{(z_1 - z_2)^{h_1 + h_2 + 1}} = 0
\]

which means that either \(C_{12} = 0\) or \(h_1 = h_2\).
If we add in complex conjugation, we see that
\[
\langle \phi_1(z_1, \bar{z}_1)\phi_2(z_2, \bar{z}_2) \rangle = \begin{cases}
\frac{C_{12}}{(z_1-z_2)^{h_1+h_2}(\bar{z}_1-\bar{z}_2)^{\bar{h}_1+\bar{h}_2}} & h_1 = h_2, \bar{h}_1 = \bar{h}_2 \\
0 & \text{else}
\end{cases}
\]

Remark. • We have a single-values correlator for \(s = h - \bar{h} \in \mathbb{Z} \) or in \(\mathbb{Z} + \frac{1}{2} \). This is owing to the face that
\[
(z_1 - z_2)^{-2h} (\bar{z}_1 - \bar{z}_2)^{-2\bar{h}} = |z_1 - z_2|^{-2h} (\bar{z}_1 - \bar{z}_2)^{2s}
\]

If we let \(s \in \mathbb{Q} \), we get a multiple-valued correlation function for parafermions.

• If we let spin equal zero, ie \(h = \bar{h} \), we recover our previous \(d \)-dimensional result.

More generally, we can apply the same techniques to compute 3- and 4- point correlation functions, finding, when we do, that
\[
\langle \phi_1(z_1, \bar{z}_1)\phi_2(z_2, \bar{z}_2)\phi_3(z_3, \bar{z}_3) \rangle = C_{123} \left(\frac{z_1-z_2}{(z_1-z_2)^{h_1+h_2-h_3}(z_1-z_3)^{h_1+h_3-h_2}(z_1-z_2)^{(1+h_3-h_1)}}\right)^{2s} \left(\frac{z_1-z_3}{(\bar{z}_1-\bar{z}_3)^{\bar{h}_1+\bar{h}_2-\bar{h}_3}(\bar{z}_1-\bar{z}_3)^{\bar{h}_1+\bar{h}_3-\bar{h}_2}(\bar{z}_1-\bar{z}_2)^{(1+\bar{h}_3-\bar{h}_1)}}\right)^{2s}
\]
and
\[
\langle \phi_1(z_1, \bar{z}_1)\phi_2(z_2, \bar{z}_2)\phi_3(z_3, \bar{z}_3)\phi_4(z_4, \bar{z}_4) \rangle = f(\eta, \bar{\eta}) \prod_{1 \leq \ell \leq 4} (z_\ell - z_\ell)^{h/3-h_k-h_{\ell}} (\bar{z}_\ell - \bar{z}_\ell)^{\bar{h}/3-\bar{h}_k-\bar{h}_{\ell}}
\]
where
\[
\eta = \frac{(z_1-z_2)(z_3-z_4)}{(z_1-z_3)(z_2-z_4)}
\]
and
\[
h = \sum_{i=1}^{4} h_i
\]
and
\[
\bar{h} = \sum_{i=1}^{4} \bar{h}_i
\]

2.3 Radial Quantization

First Example

We now return to the context of string theory, with 2-dimensional Minkowski space. Suppose we have a conformally flat world-sheet
where we have coordinates $t \in \mathbb{R}$ (‘time’) and $x \in S^1 = \mathbb{R}/(L \cdot \mathbb{Z})$ where L is the length of the string.

In 2d Minkowski space we can take the light cone coordinates $t \pm x$, and apply a Wick Rotation

$$\tau := it$$

So that we can define complex coordinates

$$\zeta = \tau + ix$$

$$\bar{\zeta} = \tau - ix$$

with the identification $\zeta \sim \zeta + iL$.

We then have a conformal map to the punctured conformal plane \mathbb{C}^*

\[\zeta \mapsto \exp\left(\frac{2\pi \zeta}{L}\right) \]

In Quantization we have

- A Hilbert state space at each fixed spatial slice (ie, fixed time τ)
- Dynamics given by a propagator amounting such slices in time.
On the conformal plane, we have

- Hilbert state space defined on circles about the origin
- Propagation of states in the radial direction

 i) Dilation operator is the Hamiltonian for the string
 ii) Rotation operator is a spatial translation along the string.

For such strings, a radial quantization scheme is very natural.

Second Example

We again consider the Euclidean space of statistical mechanics. The standard quantization is comprised of:

- Hilbert Spaces of states along 1d slices (for example in a 2d lattice).

\[\cdots \quad \cdots \quad \cdots \]

- Transfer matrices describing a correlation orthogonal to the quantized slices.

In the limit where the lattice spacing goes to zero, and at criticality, we have a conformal symmetry. So taking radial slices of the plane and a radial propagator gives the same result\(^{14}\). Radial quantization is a convenient choice because of the use of the radial operator product expansion.

In and Out States

We make the assumptions:

i) There is a vacuum state \(|0\rangle\) from which we can construct the Hilbert space of states in terms of creation operators (positive frequency modes)

ii) As \(\tau \to \pm \infty\), that is, as \((z, \bar{z}) \to \infty, 0\), the Hilbert space of states looks like the Hilbert space of states for a theory of free fields.

We can define an *in-state*

\[|\phi_{\text{in}}\rangle = \lim_{z, \bar{z} \to 0} \phi(z, \bar{z}) |0\rangle \]

This equality is known as the *state-field correspondence*.

\(^{14}\) We could also use something stranger, like, for example but in practice, the radial and euclidean schemes prove easiest to work with.
HERMITIAN PRODUCT

In string theory, Hermitian conjugation has no effect on the 2d Minkowski space.

- Hermitian conjugation on Euclidean time:
 \[
 \tau = it : \tau \mapsto -\tau
 \]

- Hermitian conjugation on radial coordinates
 \[
 z \mapsto \frac{1}{z^*}
 \]

On quasi primary fields, the Hermitian conjugation is given by:

\[
\phi(z,\bar{z})^\dagger = \bar{\tau}^{-2h}z^{-2\tau}\phi(\frac{1}{z},\frac{1}{\bar{z}})
\]

We can then define an *out-state* by

\[
\langle \phi_{out} \rangle := |\phi_{in}\rangle
\]

that is

\[
\langle \phi_{out} \rangle = \lim_{z,\bar{z}\to 0} \langle 0 | \phi(z,\bar{z})^\dagger | 0 \rangle
\]

This defines a good Hermitian product for quasi-primary fields.

As a first example, we can compute:

\[
\langle \phi_{out} | \phi_{in} \rangle = \lim_{z,\bar{z},w,\bar{w}\to 0} \langle 0 | \phi(w,\bar{w})^\dagger \phi(z,\bar{z}) | 0 \rangle
\]

\[
= \lim_{w,\bar{w}\to 0} w^{-2h}w^{-2\bar{\tau}} \langle 0 | \phi(\frac{1}{w},\frac{1}{\bar{w}})\phi(z,\bar{z}) | 0 \rangle
\]

\[
\star = \lim_{w,\bar{w}\to 0} w^{-2h}w^{-2\bar{\tau}} \langle 0 | \mathcal{R}\left(\phi(\frac{1}{w},\frac{1}{\bar{w}})\phi(z,\bar{z})\right) | 0 \rangle
\]

\[
= \lim_{z,\bar{z}} w^{-2h}w^{-2\bar{\tau}} \langle \phi(\frac{1}{w},\frac{1}{\bar{w}})\phi(z,\bar{z}) \rangle
\]

\[
= \lim_{w} w^{-2h}w^{-2\bar{\tau}} \left(\frac{1}{w} - z\right)^{2h} \left(\frac{1}{w} - \bar{z}\right)^{-2\bar{\tau}}
\]

So that

\[
\langle \phi_{out} | \phi_{in} \rangle = C
\]

More generally, if we consider multiple fields, we find

\[
\langle \phi_{1,\text{out}} | \phi_{2,\text{in}} \rangle = \begin{cases} C_{12} & h_1 = h_2, \bar{h}_1 = \bar{h}_2 \\ 0 & \text{else} \end{cases}
\]

In our computation above, one step went unexplained: The radial ordering (*). We now delve into its meaning.
Recall that in QFT, the N-point correlator of quantum fields is given by a time-ordering prescription.

\[\langle \phi_1(x_1, t_1) \cdots \phi_N(x_N, t_N) \rangle = \langle 0 | T (\phi_1(x_1, t_1) \cdots \phi_N(x_N, t_N)) | 0 \rangle \]

where

\[T (\phi_1(x_1, t_1) \cdots \phi_N(x_N, t_N)) = \pm \phi_{\sigma(1)}(x_{\sigma(1)}, t_{\sigma(1)}) \cdots \phi_{\sigma(N)}(x_{\sigma(N)}, t_{\sigma(N)}) \]

The sign is due to Bose/Fermi statistics, and the permutation σ is such that

\[t_{\sigma(1)} > t_{\sigma(2)} > \cdots > t_{\sigma(N)} \]

We can perform a similar ordering for radial quantization: the radial ordering.

\[\mathcal{R} (\phi_1(z, \bar{z}) \phi_2(w, \bar{w})) = \begin{cases} \phi_1(z, \bar{z}) \phi_2(w, \bar{w}) & |z| > |w| \\ \pm \phi_2(w, \bar{w}) \phi_1(z, \bar{z}) & |z| < |w| \end{cases} \]

The positive sign comes in the case where at least one of the fields in question is bosonic, and the minus sign in the case where both fields are fermionic.

With the radial ordering, we have the operator-state correspondence

\[\langle \phi_1(z_1, \bar{z}_1) \cdots \phi_N(z_N, \bar{z}_N) \rangle = \langle 0 | \mathcal{R} (\phi_1(z_1, \bar{z}_1) \cdots \phi_N(z_N, \bar{z}_N)) | 0 \rangle \]

Similarly to a Fourier expansion, we have the Mode expansion for quasi-primary fields of dimension $(\hbar, \bar{\hbar})$.

\[\phi(z, \bar{z}) = \sum_{m,n \in \mathbb{Z}} z^{-m-\hbar} \bar{z}^{-n-\bar{\hbar}} \phi_{m,n} \]

where the $\phi_{m,n}$ are operators.

Using the calculus of residues, we can compute the $\phi_{m,n}$

\[\phi_{m,n} = \oint \frac{dz}{2\pi i} z^{m+h-1} \oint \frac{d\bar{z}}{2\pi i} \bar{z}^{n+h-1} \phi(z, \bar{z}) \]

which then gives us the operator product expansion for the Hermitian conjugate

\[\phi(z, \bar{z})^\dagger = \bar{z}^{-2\hbar} z^{-2\bar{\hbar}} \phi(\frac{1}{z}, \frac{1}{\bar{z}}) = \sum_{n,m} \bar{z}^{-m-h} z^{-n-\bar{\hbar}} \phi_{-m,-n} \]

Looking at

\[\phi(z, \bar{z})^\dagger = \sum_{m,n} z^{-m-h} \bar{z}^{-n-\bar{\hbar}} \phi_{m,n}^\dagger \]

we see

\[\phi_{m,n}^\dagger = \phi_{-m,-n} \]
A well-defined in-state implies that
\[
\lim_{z, \bar{z} \to 0} \phi(z, \bar{z}) |0\rangle
\]
must be finite. This, in turn, requires that we have
\[
\phi_{m,n} |0\rangle = 0 \quad \text{for} \quad m > -h, \ n > -\bar{h}
\]

Remark. The mode expansion gives rise to string Fourier modes on the cylinder
\[
z = \exp \left(\frac{2\pi i}{L} (t + x) \right) \quad \bar{z} = \exp \left(\frac{2\pi i}{L} (t - x) \right)
\]
giving the expansion
\[
\phi(z, \bar{z}) = \sum_{m,n \in \mathbb{Z}} \phi_{m,n} \exp \left(-\frac{2\pi i}{L} (\Delta + m + n) t \right) \exp \left(-\frac{2\pi i}{L} (s + m - n) x \right)
\]
where \(s = h - \bar{h} \) is the spin, \(\Delta + m + n \) is the energy eigenstate of the mode, and \(s + m - n \) is the wave propagation along the spatial direction of the string.

2.4 Operator product expansions

Correlators of 2 or more fields typically exhibit singularities as their insertion points coincide. For example, for quasi-primaries

\[
\langle \phi_k(z_1, \bar{z}_1) \phi_\ell(z_2, \bar{z}_2) \rangle = \langle 0 | R(\phi_k(z_1, \bar{z}_1) \phi_\ell(z_2, \bar{z}_2)) | 0 \rangle
\]

\[
= \frac{\delta_{k\ell}}{(z_1 - z_2)^{2h_k} (\bar{z}_1 - \bar{z}_2)^{2\bar{h}_k}}
\]

the last expression is called the canonical norm for quasi-primaries.

The **operator product expansion** (OPE) describes the behavior of radially ordered quantum fields as the coincide. For example, for \(A(z, \bar{z}) \) and \(B(z, \bar{z}) \)

\[
R(A(z, \bar{z}) B(w, \bar{w})) = \sum_{n=-\infty}^{N} \sum_{m=-\infty}^{M} \{ A, B \}_{n,m}(w, \bar{w}) (z - w)^n (\bar{z} - \bar{w})^m
\]

with \(N, M \geq 0 \). In this case, we get a finite number of singular terms.

These singular terms play a special role:

\[
R(A(z, \bar{z}) B(w, \bar{w})) \sim \sum_{n=1}^{N} \sum_{m=1}^{M} \{ A, B \}_{n,m}(w, \bar{w}) (z - w)^n (\bar{z} - \bar{w})^m = A(z, \bar{z}) B(w, \bar{w})
\]

The degree zero term, known as the **normal order product**, is written

\[
: A(w, \bar{w}) B(w, \bar{w}) : = \{ A, B \}_{0,0}(w, \bar{w}) = \oint_w \oint_{\bar{w}} \frac{dz}{2\pi i} \frac{d\bar{z}}{2\pi i} \frac{R(A(z, \bar{z}) B(w, \bar{w}))}{(w - z)(\bar{w} - \bar{z})}
\]
Thus
\[\mathcal{R}(A(z, \overline{z})B(w, \overline{w})) = A(z, \overline{z})B(w, \overline{w}) + A(w, \overline{w})B(w, \overline{w}) : + \mathcal{O}(z-w, \overline{z}-\overline{w}) \]

Remark. Fields \(\phi(z) \) that depend only on \(z \) are called *chiral fields*. Fields \(\phi(\overline{z}) \) that depend only on \(\overline{z} \) are called *anti-chiral fields*.

- OPEs of chiral fields will play an important role.
- Notation: In OPEs the radial order symbol \(\mathcal{R} \) is often dropped
 \[\mathcal{R}(A(z, \overline{z})B(w, \overline{w})) = A(z, \overline{z})B(w, \overline{w}) \]

OPEs and Commutators

Let \(A(z) \) and \(B(z) \) be bosonic chiral fields. We can deform the contour of a small circle about \(w \) as seen below

\[\oint_w \frac{dz}{2\pi i} \mathcal{R}(A(z), B(w)) = \oint_{|w|+\epsilon} \frac{dz}{2\pi i} A(z)B(w) - \oint_{|w|\epsilon} \frac{dz}{2\pi i} B(w)A(z) \]

So we can rearrange the contour integral of the radially ordered product:

\[= Q_A B(w) - B(w)Q_A \]

\[= [Q_A, B(w)] \]
where \(Q_A = \oint \frac{dz}{2\pi i} A(z) \).

The result is that contour integrals encode (anti-)commutators at equal time\(^{15}\):
\[
\oint \frac{dz}{2\pi i} A(z) B(w) = [Q_A, B(w)]_{\pm}
\]

More generally, we can take
\[
\oint dw \oint \frac{dz}{2\pi i} R(A(z), B(w)) = [Q_A, Q_B]_{\pm}
\]
with \(Q_A \) and \(Q_B \) as above.

2.5 Energy-momentum tensor and conformal Ward identities

INTERLUDE: Conserved charges and infinitesimal transformations of fields.

If we have a \((d+1)\) dimensional QFT with a conserved Noether current \(j^\mu \), (ie, \(\partial^\mu j^\mu = 0 \)) then we get a conserved charge (the Noether Charge)
\[
Q = \int dx^d [j_0(x)]
\]

For infinitesimal symmetry transformations acting on a quantum field \(\phi(x) \),
\[
\delta \phi(x) = \tilde{\phi}(x) - \phi(x) = -\epsilon [Q, \phi(x)]
\]
where the last term is the equal time commutator.

In the context of a 2d CFT with radial quantization, the conserved charge \(Q \) of the radial component of a conserved chiral current yields
\[
\delta \phi(w, \bar{w}) = -\epsilon [Q, \phi(w, \bar{w})] = -\epsilon \oint \frac{dz}{2\pi i} R(A, \phi)
\]

Energy-Momentum tensor

The energy-momentum tensor \(T_{\mu,\nu} \) generates local coordinate transformations\(^{16}\). For Lorentz-invariant theories it is conserved
\[
\partial^\mu T_{\mu,\nu} = 0
\]
so we get a conserved charge
\[
P_\mu = \int dx^d T_{\mu,\nu}\nu
\]
which are the momentum operators, and are translationally symmetric.

By rotational invariance, \(T_{\mu,\nu} \) can also be chosen to be symmetric
\[
T_{\mu,\nu} = T_{\nu,\mu}
\]

In conformal theories, we call the conserved current
\[
j^D_\mu = x^\nu T_{\nu,\mu}
\]

\(^{15}\) Whether we get a commutator or an anti-commutator is dependent on the Bose/Fermi statistics. If at least one of the operators is bosonic, we have
\[\{[-, -], [-, -] \} = [-, -] \]
If both are Fermionic, we have
\[\{[-, -], [-, -] \} = \{[-, -], [-, -] \}

\(^{16}\) In Lagrangian theories, it is the response of the Lagrangian to the variation of space-time.
the *dilation current* because the associated charge D is the dilation operator.

Scale invariance (generated by the dilation operator) leads to

$$0 = \partial^\mu j_\mu^D = T^\mu_\mu$$

so that the energy-momentum tensor is traceless in CFTs.

Back in the 2d setting, we can take holomorphic coordinates

$$z = x^1 + ix^2 \quad \bar{z} = x^1 - ix^2$$

$$\partial_z = \frac{1}{2} (\partial_1 - i \partial_2) \quad \partial_{\bar{z}} = \frac{1}{2} (\partial_1 + i \partial_2)$$

We can then compute the energy-momentum tensor

$$T_{z,z} = \partial x^1 \frac{\partial x^1}{\partial z} T_{1,1} + \partial x^2 \frac{\partial x^2}{\partial z} T_{2,2} + \partial x^1 \frac{\partial x^2}{\partial \bar{z}} T_{1,2} + \partial x^2 \frac{\partial x^1}{\partial \bar{z}} T_{2,1}$$

$$= \frac{1}{4} (T_{1,1} - 2iT_{1,2} - T_{2,2})$$

$$T_{\bar{z},\bar{z}} = \frac{1}{4} (T_{1,1} + 2iT_{1,2} - T_{2,2})$$

$$T_{z,\bar{z}} = T_{\bar{z},z} = \frac{1}{4} (T_{1,1} + T_{2,2})$$

From the metric

$$g_{z,z} = g_{\bar{z},\bar{z}} = \eta(\partial_z, \partial_z) = \eta(\partial_{\bar{z}}, \partial_{\bar{z}}) = 0$$

$$g_{z,\bar{z}} = g_{\bar{z},z} = \eta(\partial_z, \partial_{\bar{z}}) = \frac{1}{2}$$

we can compute conservation laws:

i) Translation invariance gives

$$\partial_z T_{z,z} + \partial_{\bar{z}} T_{\bar{z},z} = 0$$

$$\partial_{\bar{z}} T_{z,\bar{z}} + \partial_z T_{\bar{z},z} = 0$$

ii) Because of scale invariance

$$T_{z,\bar{z}} = T_{\bar{z},z} = 0$$

so that

$$\partial_z T_{z,z} = 0$$

$$\partial_{\bar{z}} T_{\bar{z},z} = 0$$

Implying that $T_{z,z}$ and $T_{\bar{z},\bar{z}}$ are chiral and anti-chiral currents\(^{17}\), respectively.

\(^{17}\text{Notation: the chiral energy-momentum current is}\)

$$T(z) := -2\pi T_{z,z}(z)$$

\(^{17}\text{and the anti-chiral is}\)

$$T(\bar{z}) := -2\pi T_{\bar{z},\bar{z}}(\bar{z})$$
Conformal Transformations of primary fields

Let \(\phi(w, \overline{w}) \) be a chiral field of conformal weight \((h, \overline{h})\). Taking a local infinitesimal coordinate transformation

\[
z \mapsto \hat{z} = z + \epsilon(z)
\]

we get

\[
\delta_\epsilon \phi(w, \overline{w}) = -[Q_\epsilon, \phi(w, \overline{w})] \\
= - \oint_w \frac{dz}{2\pi i} \epsilon(z) \mathcal{R}(T(z), \phi(w, \overline{w})) \\
= - (h(\partial_w \epsilon(w)) \phi(w, \overline{w}) + \epsilon(w) \partial_w \phi(w, \overline{w}))
\]

(\ast)

We notice that

\[
\oint_w \frac{dz}{2\pi i} \epsilon(z) \phi(w, \overline{w}) = \partial_w \epsilon(w) \phi(w, \overline{w}) \\
\oint_w \frac{dz}{2\pi i} \epsilon(z) \phi(w, \overline{w}) = \epsilon(w) \partial_w \phi(w, \overline{w})
\]

so that, with (\ast) we find that a primary field \(\phi(w, \overline{w}) \) is characterized by its OPE with \(T(z) \) and \(\overline{T}(\overline{z}) \).

\[
\mathcal{R}(T(z) \phi(w, \overline{w})) \sim \frac{h}{(z-w)^2} \phi(w, \overline{w}) + \frac{1}{z-w} \partial_w \phi(w, \overline{w}) \\
\mathcal{R}(\overline{T}(\overline{z}) \phi(w, \overline{w})) \sim \frac{\overline{h}}{(\overline{z}-\overline{w})^2} \phi(w, \overline{w}) + \frac{1}{\overline{z}-\overline{w}} \partial_{\overline{w}} \phi(w, \overline{w})
\]

Remark. Theres OPEs of \(\phi(z, \overline{z}) \) with \(T(z) \) and \(\overline{T}(\overline{z}) \) are often used as the definition of a primary field.

Conformal Ward identities

Let \(\phi_k(w_k, \overline{w}_k) \) be any primary fields located at \(|w_k| < R, k = 1, \ldots, N \). For \(z \mapsto z + \epsilon(z) \), we can use the contour

\[
\mathbb{C}
\]
to compute

$$\left\langle \oint \frac{dz}{2\pi i} \epsilon(z) T(z) \phi_1(w_1, \overline{w}_1) \cdots \phi_N(w_N, \overline{w}_N) \right\rangle$$

$$= \sum_{k=1}^{N} \left\langle \phi_1(w_1, \overline{w}_1) \cdots \left(\oint \frac{dz}{2\pi i} \epsilon(z) T(z) \phi_k(w_k, \overline{w}_k) \right) \cdots \phi_N(w_N, \overline{w}_N) \right\rangle$$

which implies

$$\left\langle T(z) \phi_1(w_1, \overline{w}_1) \cdots \phi_N(w_N, \overline{w}_N) \right\rangle \sim \sum_{k=1}^{N} \left(\frac{h_k}{(z - w_k)^2} + \frac{1}{z - w_k} \frac{\partial}{\partial w_k} \right) \left\langle \phi_1(w_1, \overline{w}_1) \cdots \phi_N(w_N, \overline{w}_N) \right\rangle$$

which is known as the conformal Ward identity for primary fields.

The conformal Ward identities imply

$$\delta_{\epsilon} \langle \phi_1 \cdots \phi_N \rangle = - \oint \frac{dz}{2\pi i} \epsilon(z) \left(T(z) \phi_1(w_1, \overline{w}_1) \cdots \phi_N(w_N, \overline{w}_N) \right)$$

$$= \sum_{k=1}^{N} \oint \frac{dz}{2\pi i} \epsilon(z) \left(\frac{h_k}{(z - w_k)^2} + \frac{1}{z - w_k} \frac{\partial}{\partial w_k} \right) \langle \phi_1 \cdots \phi_N \rangle$$

in particular

$$\delta_{\epsilon} \langle \phi_1 \cdots \phi_N \rangle = 0$$

for an infinitesimal global conformal transformation

$$\epsilon(z) = c_{-1} + c_0 z + c_1 z^2$$

allows us to recover differential equations for correlators as discussed before.

There are some technical assumptions that were needed to derive the Ward identities:

- $T(z)$ must be regular in the conformal plane\(^{18}\).
- Poles must only arise when the fields coincide.
- $T(z)$ is an energy density, that is

 $$T_{\mu\nu} \sim (\text{length})^{-2}$$

From which we can calculate the scaling dimension

$$\frac{\Delta}{2} = 2$$

which implies $T(z)$ has conformal weight $h = 2$, and $\mathcal{T}(z)$ has conformal weight $\overline{h} = 2$.\(^{18}\) It is worth recalling that $T(z)$ should not be thought of as a function, but rather as a holomorphic section of a bundle specified by the scaling dimension. As a result, we can require more strongly that $T(z)$ be regular on \mathbb{P}^1 without necessarily imposing the condition that $T(z)$ be constant.
If we take the coordinate transformation
\[z \mapsto w = -\frac{1}{z} \]
we see that
\[T(z) \mapsto \tilde{T}(w) = \left(\frac{dw}{dz}\right)^{-2} T(z) = z^4 T(z) \]
which tells us that \(T(z) \) must decay as \(z^{-4} \) if regularity is to hold at \(z = \infty \).

2.6 Examples of CFTs (Free CFTs)

Recall from QFT:

(A) **Noether’s Theorem** (See, eg, di Francesco et al): For a QFT with an action
\[S[\phi^A] = \int d^d x \mathcal{L}[\phi^A] \]
and an infinitesimal symmetry transformations
\[\tilde{x}^\mu = x^\mu + \frac{\delta x^\mu}{\delta w_a} \]
\[\tilde{\phi}^A(\tilde{x}^\mu) + \frac{\delta \mathcal{F}^A[\phi^A]}{\delta w_a} w_a \]
there is a conserved current
\[\partial^\mu j^a_\mu = 0 \]
given by
\[j^a_\mu = \left(\frac{\partial \mathcal{L}}{\partial (\partial^\nu \phi^A)} \partial_\nu \phi^A - \eta_{\mu \nu} \mathcal{L} \right) \frac{\delta x^\nu}{\delta w_a} + \frac{\partial \mathcal{L}}{\partial (\partial^\nu \phi^A)} \frac{\delta \mathcal{F}^A}{\delta w_a} \]

(B) **Wick’s Theorem**: A time-ordered product\(^{19}\) of fields equals the sum of normal ordered products with all possible contractions, eg
\[\tau(\phi_1, \phi_2, \phi_3, \phi_4) = : \phi_1 \phi_2 \phi_3 \phi_4 : + : \phi_1 \phi_2 \phi_3 \phi_4 : + \cdots + : \phi_1 \phi_2 \phi_3 \phi_4 : + \cdots + : \phi_1 \phi_2 \phi_3 \phi_4 : \]
where the contractions are given by\(^{20}\)
\[: \phi_1 \cdots \phi_k_1 \cdots \phi_k_2 \cdots \phi_n : = (\pm) : \phi_1 \cdots \phi_k_1 \cdots \phi_k_2 \cdots \phi_N : \times (\phi_k_1 \phi_k_2) \]

\(^{19}\) For CFT, we replace the time-ordered product with the radially ordered product, ie, \(\tau(\cdots) \) with \(\mathcal{R}(\cdots) \).

\(^{20}\) Here I use the notational convention that \(\phi_i \) means omit the entry \(\phi_i \).
Example I: The Free Boson

Take the free, real field \(\phi : \mathbb{R}^2 \to \mathbb{R} \) with

\[
S[\phi] = \frac{g}{2} \int d^2x \partial_\mu \phi(x) \partial^\mu \phi(y) = \frac{1}{2} \int d^2x \int d^2y \phi(x)A(x, y)\phi(y)
\]
as the action \(^{21}\) where

\[A(x, y) = -g\delta(x^\mu - y^\mu)\partial_x^\mu\partial_y^\mu\]

The two point correlation function is based upon

\[\mathcal{R}(\phi(x)\phi(y)) = G_F(x, y)\]

the *Feynman propagator*, which is defined to be

\[G_f(x, y) = A^{-1}(x, y)\]
in the sense that \(^{22}\)

\[
\int d^2y A(x, y)G_F(y, z) = \delta(x^\mu - z^\mu)
\]

This implies that

\[
\delta(x^\mu - z^\mu) = -g\frac{\partial}{\partial x^\mu} \frac{\partial}{\partial x^\mu} G_f(x, z)
\]

(\(^{\star}\))

As we saw previously, rotational and translational invariance means

\[G_F(x, y) = G_F(|x - y|) = G_F(r)\]

and, expressing the equation \((\star)\) in polar coordinates and integrating, we get

\[1 = 2\pi \int dr \left[r \left(-g \frac{1}{r} \partial_r r G_F(r) \right) \right]\]

which, when solved, yields

\[G'_F(r) = -\frac{1}{2\pi gr}\]

so that

\[G_F(x, y) = -\frac{1}{2\pi g} \log |x - y| + \text{const}\]

In complex coordinates \(^{23}\), we can rewrite the action as

\[S[\phi] = 2g \int d^2z \partial_z \phi(z, \bar{z}) \partial_{\bar{z}} \phi(z, \bar{z})\]

so that

\[\mathcal{R}(\phi(z, \bar{z})\phi(w, \bar{w})) = -\frac{1}{4\pi g} (\log(z - w) + \log(\bar{z} - \bar{w}) + \text{const})\]

For a chiral (holomorphic) field, we have \(\partial_{\bar{z}} \phi(z, \bar{z}) = 0\), so \(^{24}\)

\[\mathcal{R}(\partial_z \phi(z, \bar{z})\partial_{\bar{w}} \phi(w, \bar{w})) \sim -\frac{1}{4\pi g} \frac{1}{(z - w)^2}\]

\(^{21}\) Notice that this is a scalar field whose action is obviously invariant with respect to translations, rotations, and scale transformations. A little work shows that it is also SCT invariant.

\(^{22}\) That is, in a very loose sense, inverse under the inner product on distributions of \(\mathbb{R}^2\).

\(^{23}\) Where \(d^2z = \frac{i}{2}dz d\bar{z} = dx^2\)

\(^{24}\) Note that, for free fields there is only a single singular term in the OPE.
Energy-Momentum tensor

We take an infinitesimal symmetry transformation
\[\tilde{x}^\mu = x^\mu + \epsilon^\mu \]
acting on \(S[\phi] \).
\[\tilde{\phi}(\tilde{x}^\mu) = \phi(x^\mu) \]
Then we get
\[T_{\mu\nu} = \frac{\partial L}{\partial (\partial_\mu \phi)} \partial_\nu \phi - \eta_{\mu\nu} L \\
= g \partial_\mu \phi \partial_\nu \phi - \frac{g}{2} \eta_{\mu\nu} \partial_\rho \phi \partial^\rho \phi \]
so the tensor is symmetric and traceless (as expected from a scale invariant theory).

In complex coordinates, we can compute (cf section 2.5)
\[T(z) = -2\pi \frac{1}{4} (T_{1,1} - 2iT_{1,2} - T_{2,2}) \\
= -2\pi g \partial_z \phi(z, \bar{z}) \partial_{\bar{z}} \phi(z, \bar{z}) \]
From quantum theory, we have
\[\langle 0 | T(z) | 0 \rangle = 0 \]
so that
\[T(z) = -2\pi g (\partial_z \phi(z, \bar{z}) \partial_{\bar{z}} \phi(z, \bar{z})) \]

OPEs

(A) We compute the radial ordering
\[\mathcal{R}(T(z) \partial_w \phi(w, \bar{w})) = -2\pi g \partial_z \phi \partial_{\bar{z}} \phi \partial_w \phi \]
\[\sim -2\pi g \left(\partial_z \frac{\partial_{\bar{z}} \phi \partial_w \phi}{(z-w)^2} + \partial_z \frac{\partial_{\bar{z}} \phi \partial_w \phi}{(z-w)} \right) \]
\[\sim \frac{\partial_z \phi(z, \bar{z})}{(z-w)^2} + \frac{\partial_z \phi(w, \bar{w})}{(z-w)} \]
Which tells us that \(\partial_z \phi(z, \bar{z}) \) is a chiral primary field with conformal weight \(h = 1 \). Similarly, we have that \(\partial_{\bar{z}} \phi(z, \bar{z}) \) is an anti-chiral primary with conformal weight \(\bar{h} = 1 \).
(B) We now work on the energy-momentum tensor

\[R(T(w)T(w)) \sim 4\pi^2 g^2 \left(\partial_z \phi \partial_z \phi : \partial_w \phi \partial_w \phi : \right) \]

\[\sim 4\pi g \left(2 \left(\partial_z \phi \partial_z \phi \partial_w \phi \partial_w \phi : \right) + \partial_z \phi \partial_z \phi \partial_w \phi \partial_w \phi : \right) \]

\[\sim \frac{1}{(z-w)^4} - 4\pi g \frac{\partial_z \phi \partial_z \phi :}{(z-w)^2} \]

\[\sim \frac{1}{(z-w)^4} + \frac{2(-2\pi g : \partial_w \phi \partial_w \phi :)}{(z-w)^2} - 4\pi g \frac{\partial_w \phi \partial_w \phi :}{(z-w)^2} \]

Where the last step comes by Fourier expanding. In conclusion, we then have

\[R(T(z)T(z)) \sim \frac{c/2}{(z-w)^4} + \frac{2T(w)}{(z-w)^2} + \frac{\partial_w T(w)}{(z-w)} \]

where \(c = 1 \).

Remark. Note that \(T(z) \) is not primary because of the circled term. It is ‘almost’ a chiral primary field of conformal weight \(h = 0 \)

\(c \) is called the central charge. For the free boson, as we have seen, \(c = 1 \).

Example II: The Free Fermion CFT We take the Euclidean action of a real (Majorana) fermion\(^{25}\)

\[S[\psi] = \frac{g}{2} \int d^2x \Psi^\dagger \gamma^2 \gamma^\mu \partial^\mu \Psi \]

\[= g \int d^2x \Psi^\dagger \left[\begin{array}{c} \partial_z \\ d \ldots \ldots d \end{array} \right] \Psi \]

\[= g \int d^2z \left(\psi \partial_z \bar{\psi} + \bar{\psi} \partial_z \psi \right) \]

where \(\Psi = (\bar{\psi}, \psi) \).

The equations of motion are then

\[\partial_z \psi = 0 \Rightarrow \psi \text{ is a chiral (holomorphic) field} \]

\[\partial_z \bar{\psi} = 0 \Rightarrow \bar{\psi} \text{ is an anti-chiral field} \]

We can then calculate the Feynman Propagator\(^{26}\)

\[S[\Psi] = \frac{1}{2} \int d^2x \int d^2y \Psi^\dagger(x)A(x,y)\Psi(y) \]

\[A(x,y) = g\delta(x^\mu - y^\mu)\gamma^2 \gamma^\mu \partial^\mu \]

\(^{25}\) Where the \(\gamma^\mu \) are Pauli matrices. In principle, we could take any, by here we take

\[\gamma^1 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \]

and

\[\gamma^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

so that

\[\{\gamma^\mu, \gamma^\nu\} = 2\eta^\mu\nu \]

\(^{26}\) As before, the idea is to write the action in terms of a kernel which we then invert
We then obtain the Feynman propagators\(^{27}\)

\[
\mathcal{R}(\psi(z, \bar{z})\psi(w, \bar{w})) \sim \frac{1}{2\pi g} \frac{1}{z - w} \\
\mathcal{R}(\bar{\psi}(z, \bar{z})\bar{\psi}(w, \bar{w})) \sim \frac{1}{2\pi g} \frac{1}{\bar{z} - \bar{w}} \\
\mathcal{R}(\bar{\psi}(z, \bar{z})\psi(w, \bar{w})) = 0
\]

We can also compute the energy-momentum tensor using Noether’s theorem

\[
T(z) = -\pi g : \psi \partial_z \psi : \\
\bar{T}(\bar{z}) = -\pi g : \bar{\psi} \partial_{\bar{z}} \bar{\psi} :
\]

OPEs

(A) We have two possible contractions to worry about in computing the radial ordering

\[
\mathcal{R}(T(z)\psi(w, \bar{w}) \sim -\pi g : \psi \partial_z \psi : \psi(w, \bar{w}) \\
\sim \frac{1}{2} \partial_z \psi(z, \bar{z}) \left[\frac{1}{2} \psi(z, \bar{z}) \partial_z \frac{1}{z - w} \right] \text{ red} \\
\sim \frac{1}{2} \partial_w \psi(w, \bar{w}) \left[\frac{1}{2} \psi(z, \bar{z}) \partial_z \frac{1}{z - w} \right] \text{ orange} \\
\sim \frac{1}{2} \partial_w \psi(w, \bar{w}) (z - w)^2 + \partial_z \psi(w, \bar{w}) (z - w)
\]

which implies that \(\psi(z, \bar{z})\) is a chiral primary with conformal weight \(h = \frac{1}{2}\). Similarly, \(\bar{\psi}(z, \bar{z})\) can be shown to be an anti-chiral primary with conformal weight \(\bar{h} = \frac{1}{2}\).

(B) We also have, for the energy-momentum tensor

\[
\mathcal{R}(T(z)T(w)) \sim \frac{1/2}{(z - w)^2} + \frac{2T(w)}{(z - w)^2} + \partial_w T(w) (z - w)
\]

which tells us that the free Majorana fermion has central charge \(c = \frac{1}{2}\).

2.7 The central charge \(c\)

Observation:

\[
\mathcal{R}(T(z)T(w)) \sim \frac{\frac{c}{2}}{(z - w)^2} + \frac{2T(w)}{(z - w)^2} + \partial_w T(w) (z - w)
\]

We call \(c\) the central charge. As we have already calculated, the free boson has \(c = 1\), and the free Majorana fermion has \(c = \frac{1}{2}\).
Properties

- For dilations \(z \mapsto \lambda z \), we have
 \[T(z) \mapsto \lambda^{-2} T(z) \]
 which, in turn, implies
 \[\mathcal{R}(T(z)T(w)) \mapsto \lambda^{-4} \mathcal{R}(T(z)T(w)) \]
 so the central charge is consistent with the expected scaling relation.

- For a sum of decoupled CFTs \(\text{CFT}_1, \ldots, \text{CFT}_N \), the energy-momentum tensor is
 \[T_{\text{total}}(z) = \sum_{i=1}^{N} T_i(z) \]
 And, since the theories are decoupled, this means
 \[\mathcal{R}(T_{\text{total}}(z), T_{\text{total}}(w)) = \sum_{k=1}^{N} \mathcal{R}(T_k(z)T_k(w)) \]
 In turn, this means that we get
 \[c_{\text{total}} = c_1 + \cdots + c_N \]
 ie, the central charge is an extensive quantity.

- Transformation behavior under infinitesimal conformal transformations
 \[x^\mu \mapsto \tilde{x}^\mu = x^\mu + \epsilon^\mu(x) \]
 yields
 \[
 \delta T(w) = -[Q_\epsilon, T(w)] = -\oint \frac{dz}{2\pi i} \epsilon(z) \mathcal{R}(T(z)T(w)) \\
 = \oint \frac{dz}{2\pi i} \left[\epsilon(z) \frac{\tilde{z}}{\tilde{z} - w} + \frac{z\epsilon(z)T(w)}{(z-w)^4} + \frac{\epsilon(z)\partial_w T(w)}{z-w} \right] \\
 = -\frac{c}{12} \left(\partial_w^3 \epsilon(w) \right) - 2(\partial_w \epsilon(w))T(w) - \epsilon(w)\partial_w T(w)
 \]
 A finite local conformal transformation takes the form
 \[z \mapsto \tilde{z} = w(z) \]
 so that
 \[\tilde{T}(\tilde{z}) = \left(\frac{dw}{dz} \right)^{-2} \left(T(z) - \frac{c}{12} \{w(z); z\} \right) \]
 with the Schwarzian derivative\(^{28}\)

\(^{28}\) Interestingly, while the invariance properties proved below related the Schwarzian derivative to the complex plane, it also appears to bear some relation to solutions of the hypergeometric equation.
\[\{ w(z); z \} = \frac{w'''(z)}{w'(z)} - \frac{3}{2} \left(\frac{w''(z)}{w'(z)} \right)^2 \]

For \(z \mapsto u(z) \) and \(u \mapsto w(u) \) we have the following ‘chain rule’ for the Schwarzian derivative

\[\{ w(u(z)); z \} = \{ u(z); z \} + \frac{du}{dz} \{ w(u); u \} \quad (*) \]

Now, moving on to \textit{global} conformal transformations in \(PSL(2, \mathbb{C}) \), we have

\[z \mapsto \tilde{z} = \frac{az + b}{cz + d} \]

Such transformations are generated by

(i) \(z \mapsto \lambda z \), which has Schwarzian derivative

\[\{ \lambda z; z \} = 0 \]

(ii) \(z \mapsto z + c \), which has Schwarzian derivative

\[\{ z + c; z \} = 0 \]

(iii) \(z \mapsto -\frac{1}{z} \), which has Schwarzian derivative

\[
\begin{align*}
\{ \frac{1}{z}; z \} &= -3! \frac{z^{-4}}{-z^{-2}} - \frac{3}{2} \left(\frac{-2z^{-3}}{-z^{-2}} \right)^2 \\
&= 6z^{-2} - 6z^{-2} = 0
\end{align*}
\]

As a result, we see that \(\{ w(z); z \} = 0 \) for any \(PSL(2, \mathbb{C}) \) transformation. This implies that for such transformations

\[\hat{T}(w) = \left(\frac{dw}{dz} \right)^{-2} T(z) \]

and thus, \(T(z) \) is a chiral quasi-primary field with conformal weight \(h = 2 \).
In some cases of anomalies, we can find a group extension \(\hat{G} \) of \(G \) by some group \(H^{29} \) such that a representation can be constructed with respect to \(\hat{g} \).

Example. In quantum mechanics in three dimensions, consider the symmetry group \(SO(3) \), and the state space of spin \(\frac{1}{2} \) states

\[
\left| \frac{1}{2}, \pm \frac{1}{2} \right>
\]

The action of

\[
e^{2\pi i J_3} \left| \frac{1}{2}, \pm \frac{1}{2} \right> = e^{2\pi i (\pm \frac{1}{2})} \left| \frac{1}{2}, \pm \frac{1}{2} \right>
\]

\[
= - \left| \frac{1}{2}, \pm \frac{1}{2} \right>
\]

does not quite agree with identities.

However, there is an extension of \(SO(3) \) by \(\mathbb{Z}/2 \), i.e.

\[
SU(2)/\langle \mathbb{Z}/2 \rangle \cong SO(3)
\]

Which implies that, taking \(\hat{G} = SU(2) \), and considering

\[
\begin{bmatrix}
-1 & 0 \\
0 & -1
\end{bmatrix} \in SU(2)
\]

we get the desired result.

Moreover, this extension is central. That is, \(\mathbb{Z}/2 \) is in the center of \(SU(2) \).
Example (Classical Mechanics). We can find an explicit central extension of the Galileo group, see [2] for details.

Central Extensions of the deWitt Algebra

We consider the OPE of \(T(z) \), the infinitesimal generator for local conformal transformations.

\[
\mathcal{R}(T(z), T(w)) \sim \frac{c/2}{(z-w)^4} + \frac{z T(w)}{(z-w)^2} + \frac{\partial_w T(w)}{z-w}
\]

Recall that \(T(w) \) has the expansion

\[
T(w) = \sum_{n \in \mathbb{Z}} z^{-n-2} L_n
\]

which gives us the commutation relations

\[
[L_n, L_m] = \oint \frac{dz}{2\pi i} \oint \frac{dw}{2\pi i} w^{m+1} z^{n+1} \mathcal{R}(T(z)T(w))
\]

From these relations, we retrieve the Virasoro Algebra \(\text{Vir} \oplus \overline{\text{Vir}}^{30} \)

Claim. Vir is a central extension of the deWitt algebra\(^31\) \(A \) by \(\mathbb{C} \).

That is, there is a short exact sequence of Lie algebra homomorphisms

\[
0 \to \mathbb{C} \xrightarrow{f} \text{Vir} \xrightarrow{g} A \to 0
\]

where \(\mathbb{C} \) is generated by \(c \), and there includes into the center of \(\text{Vir} \), and \(f, g \) respect the Lie bracket of \(\text{Vir} \) algebras.

Remark. Vir is the unique non-trivial\(^32\) central extension of \(A \).

To see why this is the case, we first comment that non-trivial central extensions are classified by the cohomology group

\[
H^2(\mathfrak{g}, a) = \frac{Z^2(\mathfrak{g}, a)}{B^2(\mathfrak{g}, a)}
\]

Where

(a) \(\Theta \in Z^2(\mathfrak{g}, a) \) means that

\[
\Theta : \mathfrak{g} \otimes \mathfrak{g} \to a
\]

\[
\Theta(X, Y) = -\Theta(Y, X)
\]

\[
\Theta(X, [Y, X]) + \Theta(Z, [X, Y]) + \Theta(Y, [Z, X]) = 0
\]

we call such \(\Theta \) cocycles

(b) \(\Theta \in B^2(\mathfrak{g}, a) \), the exact cocycles, are characterized by the property that there exists

\[
\mu : \mathfrak{g} \to a
\]

such that

\[
\Theta(X, Y) = \mu([X, Y])
\]

\(^{30}\) This algebra is completely characterized by the commutation relations

\[
[L_n, L_m] = (n-m) L_{n+m} + \frac{c}{12} n(n^2-1) \delta_{n+m,0}
\]

\[
[L_n, T_m] = (n-m) T_{n+m} + \frac{\pi}{12} n(n^2-1) \delta_{n+m,0}
\]

\[
[L_n, L_m] = 0
\]

\(^{31}\) Whose commutation relations are of the form

\[
[L_n, L_m] = (n-m) L_{n+m}
\]

\(^{32}\) Non-trivial meaning the sequence does not split, that is, is not equivalent to the sequence

\[
0 \to a \to a \oplus g \to g \to 0
\]
Given a representative of an equivalence class \([\Theta] \in H^2(g, a)\), we see that \(\Theta\) defines a Lie bracket for \(h\) (The direct sum of \(g\) and \(a\) as vector spaces) by the formula\(^{33}\)

\[
[L \oplus \Theta, L' \oplus \Theta]_h = [L, L'] + \Theta([L, L'])
\]

Since the \(\Theta\) is exact, we have

\[
\tilde{L} = L \oplus_{\mu} L
\]

and hence

\[
[L, L']_h = [\tilde{L}, \tilde{L}']_g
\]

Now, returning to the case of the de Witt algebra \(\mathcal{A}\), one can compute that

\[
H^2(\mathcal{A}, C) \cong C \cong (\Theta)
\]

where

\[
\Theta(L_n, L_m) = \frac{c}{12} n(n^2 - 1) \delta_{n+m,0}
\]

This tells us that Vir is unique as a non-trivial central extension\(^{34}\).

The physical interpretation of \(c\)

1. **Casimir Energy\(^{35}\):** Previously we mapped the cylindrical world-sheet of a string to the (punctured) conformal plan. If we now do the reverse, we get a map

\[
z \mapsto \zeta = \frac{L}{2\pi} \log(z)
\]

where \(L\) is the circumference of the cylinder. In these new coordinates,

\[
T_{cyl}(\zeta) = \left(\frac{2\pi}{L}\right)^2 \left(z^2 \left(T(z) - \frac{c}{12} \left\{ \log(z), z \right\} \right) \right)
\]

So that

\[
T_{cyl}(z) = \left(\frac{2\pi}{L}\right)^2 \left(z^2 T(z) - \frac{c}{24} \right)
\]

Assuming that the expectation values satisfy

\[
\langle T(z) \rangle = \langle \overline{T}(\overline{z}) \rangle = 0
\]

then

\[
\langle T_{0,0} \rangle = -\frac{1}{2\pi} \left(\langle T_{cyl}(\zeta) \rangle + \langle \overline{T}_{cyl}(\overline{\zeta}) \rangle \right)
\]

\[
= \frac{\pi (c + 7)}{12L^2}
\]

\(^{33}\) More generally, the second Lie Algebra Cohomology classifies extensions of a Lie algebra \(g\) by a module over \(g\). See, for example [3] pp. 234 or [4] pp. 153 for a purely mathematical treatment.

\(^{34}\) For a more thorough treatment, see [5] ch. 4 & 5.

\(^{35}\) The Casimir effect is a phenomenon whereby a force is observed between two plates positioned extremely close together.
This allows us to compute an energy for the cylinder

$$E_{cyl} = - \int_0^L \langle T_{0,0} \rangle = - \frac{\pi (c + \bar{c})}{12L}$$

which is the Casimir energy.

Notice that, as expected, if \(L \to \infty \), we have \(E_{cyl} \to 0 \)

Casimir Energy of the Free Scalar Field (Heuristic derivation):

We can compute the ground state energy of a sum of harmonic oscillators

$$E_{\langle 0 \rangle} = \sum_{p \in \{\text{Harm. Osc.}\}} \frac{1}{2} \omega_p$$

which yields\(^{36}\)

$$E_{\langle 0 \rangle} = 2 \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{2\pi}{L} \cdot k \right)$$

To attempt to remove this divergence, we introduce the UV regulator

$$\epsilon = \frac{L}{\Lambda_{UV}} \ll 1$$

and add an exponential damping term

$$E'_{\langle 0 \rangle} = 2 \sum_{k=1}^{\infty} \frac{1}{2} \left(\frac{2\pi}{L} \cdot k \right) e^{-\epsilon k}$$

$$= \frac{2\pi}{L} \frac{d}{d\epsilon} \left(\sum_{k=0}^{\infty} e^{-\epsilon k} \right)$$

$$= \frac{2\pi}{\epsilon^2} \left(\frac{1}{\epsilon^2} - \frac{1}{12} + O(\epsilon) \right)$$

We then define the regularized energy to be

$$E^{reg}_{\langle 0 \rangle} = \lim_{\epsilon \to 0} \left(E'_{\langle 0 \rangle} - \frac{2\pi}{L\epsilon^2} \right) = - \frac{\pi}{6L}$$

And, since for the scalar field \(c = \bar{c} = 1 \),

$$E^{reg}_{\langle 0 \rangle} = - \frac{\pi}{12L} (c + \bar{c})$$

\(^{36}\) We can think of our harmonic oscillators as merely being waves on a \(\tau \)-slice. The factor of 2 appearing in the equation can then be said to arise as a result of left- and right-moving waves (sin and cos respectively).
(2) **Trace anomaly on a closed oriented Riemann Surface C_g of genus g:**

On the classical level, $T_{\mu}^{\mu} = 0$.

On the quantum level, we get

$$\langle T_{\mu}^{\mu} \rangle_{C_g} \sim c \cdot R$$

where R is the Ricci scalar37.

The proportionality constant can be computed from the free fermionic CFT. See [6] for more details. This yields

$$\langle T_{\mu}^{\mu} \rangle = \frac{c}{24\pi} R$$

2.8 The Hilbert Space of States

As before we consider the OPE

$$T(z)T(w) \sim \frac{c/2}{(z-w)^4} + \frac{zT(w)}{(z-w)^2} + \frac{\partial_w T(w)}{z-w}$$

with

$$T(z) = \sum_n z^{-n-2} L_n$$

and the commutation relations

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12} n(n^2 - 1)$$

In this system the vacuum, $T(z)|0\rangle$ for $z \to 0$ must be well defined, which implies that38

$$L_n|0\rangle = \overline{L}_n|0\rangle = 0$$

for $n > -2$.

In particular, the vacuum $|0\rangle$ invariant under global conformal transformations, which are generated by $L_{\pm1}, L_0, \overline{L}_{\pm1},$ and \overline{L}_0.

Raising and Lowering Operators of primaries

We consider a primary of conformal weights (h, \overline{h})

$$\phi(w, \overline{w}) = \sum_{k,m} w^{-m-h} \overline{w}^{-k-\overline{h}} \phi_{m,k}$$

And the commutation relations39

$$[L_n, \phi(w, \overline{w})] = \oint \frac{dw}{2\pi i} \mathcal{R}(T(z)\phi(w, \overline{w})) z^{n+1}$$

$$- h(n+1)w^n \phi(w, \overline{w}) + w^{n+1} \partial_w \phi(w, \overline{w})$$

Which, in turn, implies40

37 The term on the left hand side is called the **trace anomaly**. Notice that R is a local quantity which depends locally on the metric and has scaling dimension 2. This dependence on the metric is acceptable since a conformal transformation is also a metric transformation.

38 This follows from the fact that $T(z)|0\rangle$ must not have singular terms.

39 Following from the OPE

$$T(z)\phi(w, \overline{w}) \sim \frac{hT(w)}{(z-w)^2} + \frac{\partial_w T(w)}{z-w}$$

40 Because $\phi_{-m,-k}|0\rangle$ vanishes for $m < h, k < \overline{h}$.
\[[L_n, \phi_{m,k}] = (n(h - 1) - m)\phi_{n+m,k} \]

We define an asymptotic state
\[|h, \bar{h}\rangle := \phi(0, 0)|0\rangle = \phi_{-h, -\bar{h}}|0\rangle \]

And get the action of \(L_0 \)
\[L_0|h, \bar{h}\rangle = [L_0, \phi(0, 0)]|0\rangle = h|h, \bar{h}\rangle \]

analogously, we see that
\[|h, \bar{h}\rangle = \bar{h}|h, \bar{h}\rangle \]

We then see that \(|h, \bar{h}\rangle\) is the energy eigenstate of the Hamiltonian
\[H = L_0 + \mathcal{L}_0 \]

The commutation relations
\[[L_0, \phi_{m,k}] = -m\phi_{m,k} \]

tell us that \(\phi_{m,k} \) are raising operators for \(m < 0 \) and lowering operators for \(m > 0 \).

Verma Module

The Virasoro raising operators \(L_{-m} \) \((m > 0)\) acting on \(|h, \bar{h}\rangle\) yield
\[[L_0, L_{-m}] = mL_{-m} \]
\[\Rightarrow L_0L_{-m}|h, \bar{h}\rangle = (m + h)|h, \bar{h}\rangle \]

By similar arguments, we see that \(L_m \) for \(m > 0 \) are lowering operators
\[L_m|h, \bar{h}\rangle = L_m \phi_{-h, -\bar{h}}|0\rangle \]
\[= (m(h + 1) + h)\phi_{-h+m, -\bar{h}}|0\rangle \]
\[= 0 \]

where the last equality holds because \(\phi_{-m, -h}|0\rangle = 0 \) for \(m < h \).

Definition. A descendant state is given by acting with a chain of raising operators \(L_{-m_1}, \ldots, L_{-m_n} \) on the asymptotic state \(|h, \bar{h}\rangle\). Any descendant state can be written in the form
\[L_{-k_1} \cdots L_{-k_n}|h, \bar{h}\rangle \]
with the ordering convention \(1 \leq k_1 \leq k_2 \cdots \leq k_n \)

The Hilbert space of states arising from \(|h, \bar{h}\rangle\) is called a Verma modules. It forms a representation of the Virasoro algebra\(^{41}\)

\(^{41}\) is a module over the Virasoro algebra.
2.9 Conformal Families and Operator Algebra

Recall that a descendant state\(^{42}\)

\[
L_{-n}|h,\bar{h}\rangle = [L_{-n}, \phi(0,0)]|0\rangle
\]

for \(n \geq 1\) yields a definition of a descendant field (secondary field):

\[
\phi^{(u)}(w,\bar{w}) = \oint_w \frac{dz}{2\pi i} \frac{\mathcal{R}(T(z)\phi(w,\bar{w}))}{(z-w)^{n-1}}
\]

for \(n \geq 1\). Recursively, we have descendant states:

\[
\phi^{\{k_s,k_{s-1},\ldots,k_1\}}(w,\bar{w}) = \oint_w \frac{dz}{2\pi i} \frac{\mathcal{R}(T(z)\phi^{\{k_{s-1},\ldots,k_1\}}(w,\bar{w}))}{(z-w)^{k_s-1}}
\]

where \(k_i \geq 1\)

Remark.

- We use the short-hand notation

\[
\phi^{\{\bar{k}\}}(w,\bar{w}) = \phi^{\{k_s,k_{s-1},\ldots,k_1\}}(w,\bar{w})
\]

- If we include anti-holomorphic descendants\(^{43}\), we get states

\[
\phi^{\{\bar{k}\},\{\bar{k}\}}(w,\bar{w})
\]

We can also compute correlation functions of descendants, for instance:

\[
\langle \phi_0^{(k)}(w_0)\phi_1(w_1)\cdots\phi_N(w_N) \rangle = \oint_{w_0} \frac{dz}{2\pi i} \frac{1}{(z-w_0)^{k-1}} \langle T(z)\phi_0(w_0)\cdots\phi_N(w_N) \rangle
\]

where the second equality follows from the Ward identity (cf section 2.5).

The correlators

\[
\langle T(z)\phi_0(w_0)\cdots\phi_N(w_N) \rangle
\]

can have poles only at \(z \to w_k\). This implies that

\[
\langle \phi_0^{(k)}(w_0)\phi_1(w_1)\cdots\phi_N(w_N) \rangle = -\sum_{\ell=1}^{N} \oint_{w_\ell} \frac{dz}{2\pi i} \frac{1}{(z-w_0)^{k-1}}
\]

\[
\times \left(\sum_{n=0}^{N} \left(\frac{1}{z-w_n} \partial_w + \frac{h_n}{(z-w_n)^2} \right) \langle \phi_0\cdots\phi_N \rangle \right)
\]

\[
=-\sum_{\ell=1}^{N} \left(\frac{\partial_{w_\ell}}{(w_\ell-w_0)^{k-1}} + (-n-1) \frac{h_n}{(w_\ell-w_0)^k} \right)
\]

\[
\times \langle \phi_0\cdots\phi_N \rangle
\]
So that

\[\langle \phi^{(k)}(w_0) \cdots \phi_N(w_N) \rangle = \mathcal{L}_- k \langle \phi_0(w_0) \cdots \phi_N(w_N) \rangle \]

where

\[\mathcal{L}_- k = \sum_{\ell=1}^{N} \left(\frac{(k-1)h_\ell}{(w_\ell - w_0)^k} - \frac{1}{(w_\ell - w_0)^{k-1}} \partial_\ell \right) \]

In general, any correlator

\[\langle \phi_0^{(k_0)} \cdots \phi_N^{(k_N)} \rangle \]

can be rewritten in terms of differential operators acting on

\[\langle \phi_0 \cdots \phi_N \rangle \]

with the help of the Ward identity. Therefore,

\[\langle \phi_0 \cdots \phi_N \rangle \]

determines all descendant correlators.

Definition. The set of a primary field \(\phi \) together with all its descendant fields is called the \textit{conformal family} of \(\phi \), which we denote by \([\phi]\).

Conformal families have the following properties:

- Members of the conformal family \([\phi]\) transform under (local) conformal transformations among themselves. That is, OPEs of \(T(z) \) with any field of \([\phi]\) will involve only fields of \([\phi]\).
- We have the \textit{operator state correspondence}

\[\{ \text{Conformal families} \} \leftrightarrow \{ \text{Verma Modules} \} \]

The Operator Algebra

For a given CFT, the OPEs among all its primaries (including regular terms) form the so-called \textit{operator algebra}. The knowledge of the operator algebra determines all correlators of the CFT (it ‘solves’ the CFT).

Given a CFT (with countably many primaries), we normalize primaries such that

\[\langle \phi_k(w, \bar{w}) \phi_\ell(z, \bar{z}) \rangle = \frac{\delta_{k\ell}}{(z - w)^{2h_k} (\bar{z} - \bar{w})^{\bar{h}_\ell}} \]

Then\(^{44}\),

\[\lim_{(w, \bar{w}) \to \infty, (z, \bar{z}) \to 0} w^{2h_k} \bar{w}^{2h_\ell} \langle \phi_k(w, \bar{w}) \phi_\ell(z, \bar{z}) \rangle = \langle h_k, \bar{h}_k | h_\ell, \bar{h}_\ell \rangle = \delta_{k\ell} \]

\(^{44}\) See, for instance, the definitions of in and out states in section 2.3.
The orthogonality of primaries therefore implies the orthogonality of entire Verma modules. To see this, we can use the Virasora algebra for descendant states. For example:

\[L^{-n} |h, \overline{h}\rangle \text{ and } L^{-n_2} L^{-n_3} |h, \overline{h}\rangle \quad (n_i > 0) \]

gives us

\[\langle h, \overline{h}| L^{-n} \rangle = \langle h, \overline{h}| L^{-n_2} L^{-n_3} \rangle \]

\[= \langle h, \overline{h}| L^{-n_2} L^{-n_3} \rangle \]

\[= \langle h, \overline{h}| L^{-n_2} L^{-n_3} \rangle \]

\[+ \frac{c}{12} n_2^3 (n_2^2 - 1) \delta_{n_2 - n_3, 0} |h, \overline{h}\rangle \]

\[= (n_2 + n_1) \langle h, \overline{h}| L^{-n_2} L^{-n_3} \rangle \text{ non-vanishing for } n_1 > n_2 \]

\[= (n_2 + n_1) \langle h, \overline{h}| L^{-n_2} L^{-n_3} \rangle \]

\[+ \frac{c}{12} n_3 (n_3^2 - 1) \delta_{n_3 - n_1, 0} |h, \overline{h}\rangle \]

\[= (n_2 + n_1) \delta_{n_2 + n_3, n_1} \]

\[+ \frac{c}{12} n_3 (n_3^2 - 1) \delta_{n_2 + n_3, n_1} \]

\[= 0 \]

Scale invariance determines the structure of the operator algebra:

\[\phi_k(z, \overline{z}) \phi_\ell(0, 0) = \sum_{|\phi|} \sum_{\{\vec{k}\}} \sum_{\{\vec{\ell}\}} \left[C_{\ell k t}^{*\phi}(\vec{k} \vec{\ell}) \right] \]

\[\times z^{h_s - h_k - h_\ell + |\vec{k}|} \]

\[\times \overline{z}^{h_s - h_k - h_\ell + |\vec{\ell}|} \phi_\ell^*(\vec{\ell})(0, 0) \]

where

\[|\vec{k}| = \sum_n k_n \]

and

\[\vec{k} = (k_1, k_2, \ldots) \quad k_1 \leq k_2 \leq k_3 \ldots \]

The constants \(C_{\ell k t}^{*\phi}(\vec{k} \vec{\ell}) \) are the structure constants of the operator algebra.

Three-Point Correlator
We can compute the correlator
\[\langle \phi_s | \phi_k(z, \overline{z}) | \phi_\ell \rangle = \lim_{w, w' \to \infty} w^{2 h_s} \langle w, w' | \phi_k(z, \overline{z}) | \phi_\ell (0, 0) \rangle \]
\[= \lim_{w, w' \to \infty} C_{sk\ell} \frac{w^{2 h_s}}{z^{h_k - h_s} w^{h_k - h_s} (w' - z)^{h_k - h_s - h_\ell}} \times (\text{anti-holomorphic part}) \]
\[= C_{sk\ell} \frac{1}{z^{h_k + h_\ell - h_s + h_k + h_\ell - h_s - h_s}} \]
or, alternately
\[\langle \phi_s | \phi_k(z, \overline{z}) | \phi_\ell \rangle = \sum_{\{\tilde{k}\}} \sum_{\{\tilde{\ell}\}} \sum_{[\phi_\ell]} \langle \phi_s | [\phi_\ell] \rangle z^{h_s + h_k - h_\ell - h_s + \beta_{[\tilde{k}]} - \beta_{[\tilde{\ell}]} - h_s} \]
\[= \delta_{sk} C_{k\ell} \frac{\sum_{\{\phi_\ell\}}}{z^{h_k + h_\ell - h_s + h_k + h_\ell - h_s - h_s}} \]
so that
\[C_s^{\{\ell\}} = C_s^{\{\tilde{\ell}\}} = C_{sk\ell} \]

Since all correlators of descendants arise from correlators of primaries, one can show that:
\[C_s^{\{\tilde{k}\}} = C_k^{\{\ell\}} \beta_{[k]} \]

where
\[\beta_{[k]} = \beta_{[\tilde{k}]} (h_s, h_k, h_\ell, c) \]
\[\beta_{[k]}^\dagger = 1 \]

Example. Consider two chiral primaries \(\phi_k(z) \) and \(\phi_\ell(z) \) with \(h = h_k = h_\ell \) (for simplicity), then
\[\phi_k(z) \phi_\ell(0) = \sum_s C_{k\ell}^s z^{h_s - 2 h} X_s(z) \]
where
\[X_s(z) = \sum_{N=0}^{\infty} \sum_{[\tilde{k}]} z^N \beta_{[k]}^{\tilde{k}} L_{-[\tilde{k}]} \phi_s(0) \]
Hence
\[X_s(z)|0\rangle = \sum_{N=0}^{\infty} z^N |N; h_s\rangle \]
where \(|H; h_s\rangle \) is the level \(N \) state descending from
\[|\phi_s\rangle = |h_s\rangle \]
We can then compute:

\[L_n \phi_k(z) \phi_l(0) = [L - n, \phi_k(z)]|h_\ell\rangle \]

\[= (z^{n+1} \partial_z + (n+1)hz^n) \phi_k(z)|h_\ell\rangle \]

so that

\[L_n (X_s(z)|0\rangle) = \sum_{N=0}^\infty z^N L_n|N; h_s\rangle \]

\[\equiv \sum_{N=0}^\infty ((N + h_s - 2h)z^{n+N} + (n+1)hz^{N+n})|N; h_s\rangle \]

Which gives us that

\[L_n|N + n; h_s\rangle = (h_s + (n-1)h_s + N)|N; h_s\rangle \] (\(^*\))

For low \(N \), we can then begin to examine what descendant states are produced:

Level 1 There is one descendant state

\[|1; h_s\rangle = \beta_{k\ell}^{(1)} L_{-1}|h_s\rangle \]

(i) \(L_1|1; h_s\rangle \equiv h_s|0; h_s\rangle = h_s|h_s\rangle \)

(ii) \(L_1|1; h_s\rangle = \beta_{k\ell}^{(1)} \frac{[L_1, L_{-1}]}{2L_0} |h_s\rangle = 2\beta_{k\ell}^{(1)} h_2|h_2\rangle \)

Hence,

\[\boxed{\beta_{k\ell}^{(1)} = \frac{1}{2}} \]

Level 2 There are 2 descendant states

\[|2, h_s\rangle = \beta_{k\ell}^{(2)} L_{-2}|h_s\rangle + \beta_{k\ell}^{(1,1)} L_{-1}L_{-1}|h_s\rangle \]

(i) We have

\[L_1|2; h_s\rangle \equiv (h_s + 1)|1; h_s\rangle = \frac{1}{2}(h_s + 1)L_{-1}|h_s\rangle \]

\[L_s|2; h_s\rangle \equiv (h_s + h)|h_s\rangle \]

From (i) and (ii), we find a pair of linearly independent equations for \(\beta_{k\ell}^{(1,1)} \) and \(\beta_{k\ell}^{(2)} \):

\[\beta_{k\ell}^{(1,1)} = \frac{c - 12h - 4h_s + ch_s + 2h_s^2}{4(c - 10h_s + 2ch_s + 16h_s^2)} \]

\[\beta_{k\ell}^{(2)} = \frac{2h - h_s + 4hh_s + h_s^2}{c - 10h_s + 2ch_s + 16h_s^2} \]
Remark.

- All of the coefficients $\beta_{k\ell}^{(\vec{k})}(h_k, h_\ell, h_s, c)$ can, in principle, be recursively determined. As a result, the operator algebra of a CFT is determined completely by

 a) conformal families $[\phi_s]$

 b) three-point correlators of the primaries, ie $C_{sk\ell}$

- $C_{sk\ell}$ must be obtained separately (eg, by dynamic input or crossing symmetries).

2.10 Conformal Blacks & Crossing Symmetries

Having now treated three-point correlation functions, we are in a position to revisit four-point and higher correlation functions, ie

$$\langle \phi_k(z_1, \overline{z}_1) \phi_\ell(1, 1) \phi_m(\eta, \eta) \phi_n(0, 0) \rangle$$

We apply a conformal transformation which sends

$$z_1 \to \infty, \quad z_2 \to 1, \quad z_3 \to \eta, \quad z_4 \to 0$$

where, η is, as usual, the cross ratio

$$\eta = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_3)(z_2 - z_4)}$$

We can then write down a correlation function matrix element

$$G_{mn}^{\ell k}(\eta, \eta) = \lim_{z, \overline{z} \to \infty} z^{2h_k} \overline{z}^{2h_\ell} \langle \phi_k(z, \overline{z}) \phi_\ell(1, 1) \phi_m(\eta, \eta) \phi_n(0, 0) \rangle$$

If we then insert the operator product expansion of $\phi_m(\eta, \eta)$ and $\phi_n(0, 0)$, we get

$$G_{mn}^{\ell k}(\eta, \eta) = \left\langle h_k, \overline{h}_k \mid \phi_\ell(1, 1) \sum_{[\phi_p]} \sum_{\vec{k}, \vec{k}} C_{mn}^{\ell k}(\vec{k}) \eta^{h_p - h_m - h_n - |\vec{k}|} \right.$$

$$\times \alpha^{\overline{h}_p - \overline{h}_m - \overline{h}_n - |\overline{\vec{k}}|} \times L_{-\{\vec{k}\}} \overline{L}_{-\{\overline{\vec{k}}\}} \mid h_p, \overline{h}_p \right\rangle$$

We can then compute

$$G_{mn}^{\ell k}(\eta, \eta) = \sum_{[\phi_p]} C_{mn}^{\ell k} C_{p k \ell} F_{mn}^{\ell k}(\eta) \overline{F}_{mn}^{\ell k}(\eta)$$

45 Where we use the indexing convention that the indices are read counterclockwise around the symbol, as in $G_{mn}^{\ell k}$.
where

\[F_{\ell k}^{\ell k}(p|\eta) = \eta^{h_p-h_m-h_n} \sum_{\{\vec{k}\}} \eta^{\vec{k} \beta_{\ell k}^{\vec{k}}} \frac{\langle h_1|\phi_j(1)L_{-\{\vec{k}\}}|h_p\rangle}{\langle h_1|\phi_j(1)|h_p\rangle} \times L_{-\{\vec{k}\}} \mathcal{T}_{-\{\vec{k}\}}|h_p, \mathcal{T}_p\rangle \]

The

\[F_{\ell k}^{\ell k}(p|\eta) \]

are called conformal blocks of the conformal family \([\phi_p]\).

Remark.
- \(F_{\ell k}^{\ell k}(p|\eta) \eta^{h_p+h_m-h_n} \) are regular holomorphic functions at \(\eta = 0 \).
- The coefficients of the expansion of \(F_{\ell k}^{\ell k}(p|\eta) \) depend only on \(c, h_p, h_\ell, h_k, h_m, h_n \)
 that is, there is no dependence on the 3-pt structure constants.
- For explicit expressions for \(F_{\ell k}^{\ell k}(p|\eta) \), see, eg, [7]

Crossing Symmetries

The \(G_{ijkl} \) depend on a particular order of primaries, which results in one particular OPE. We could, however, think of reordering the primaries to get a different expression.

We can diagrammatically represent the conformal blocks in the following way, permuting the indices each time:\(^46\):

1) \(F_{\ell k}^{\ell k}(p|x) = \)

\[\begin{array}{c}
(1) j i (\infty) \\
\end{array} \]

\[\begin{array}{c}
p \\
\end{array} \]

\[\begin{array}{c}
(\eta) k \ell (0) \\
\end{array} \]

which, in turn, implies that we can write the \(s\)-channel expression:\(^47\)

\[G_{ij}(x) = \sum_p C_{ij}^p C_{pkl} \begin{pmatrix}
\begin{pmatrix}
j i \\
p \\
(\eta) k \ell
\end{pmatrix}
\end{pmatrix} \begin{pmatrix}
j i \\
p \\
(\eta) k \ell
\end{pmatrix} \]

Here, we have

\[x = \frac{(\infty - 1)(\eta - 0)}{(\infty - \eta)(1 - 0)} = \eta \]

\(^46\) Only the index circled in orange must be fixed under this permutation. This is because it determines both the out state and the \(\eta^{h_i-i} \) regularization factor in the limit.

\(^47\) From quantum field theory one would also expect a T-channel and a U-channel, which, as we will shortly see, also exist.
2) \begin{align*}
\mathcal{F}_{kj}^{ji}(p|x) = \begin{array}{c}
(1) j i \infty
\end{array} \begin{array}{c}
p \end{array} \begin{array}{c}
(\eta) k \ell 0
\end{array} \end{align*}
giving the \textit{t-channel} \n\begin{align*}
G_{kj}^{li}(1 - \eta, 1 - \bar{\eta}) = \sum_p C_{ik}^p C_{pj}^l \begin{array}{c}
(\eta) p
\end{array} \begin{array}{c}
(\eta) p
\end{array} \end{align*}
Here we have \n\begin{align*}
x = \frac{(\infty - 0)(\eta - 1)}{(\infty - \eta)(0 - 1)} = 1 - \eta \end{align*}
3) \begin{align*}
\mathcal{F}_{lj}^{ki}(p|x) = \begin{array}{c}
(1) j i \infty
\end{array} \begin{array}{c}
p \end{array} \begin{array}{c}
(\eta) k \ell 0
\end{array} \end{align*}
giving the \textit{u-channel} \n\begin{align*}
G_{lj}^{ki}(1/\eta - 1, 1/\bar{\eta} - 1) = \sum_p C_{ik}^p C_{pl}^j \begin{array}{c}
(\eta) p
\end{array} \begin{array}{c}
(\eta) p
\end{array} \end{align*}
here, \n\begin{align*}
x = \frac{(\infty - \eta)(0 - 1)}{(\infty - 0)(\eta - 1)} = \frac{1}{\eta - 1} \end{align*}
We would expect these different interpretations to agree, that is, we impose the \textit{crossing symmetries}
\begin{align*}
\underbrace{G_{kl}^{ji}(\eta, \bar{\eta})}_{\text{s-channel}} = \underbrace{G_{kj}^{li}(1 - \eta, 1 - \bar{\eta}) = G_{lj}^{ki}(1/\eta - 1, 1/\bar{\eta} - 1)}_{\text{t-channel u-channel}} \end{align*}
\textbf{Bootstrap approach:} Specify the dynamics of a CFT by consistency using crossing symmetries.
Given a CFT with central charge \(c \) and \(N \) conformal families we have \n\begin{align*}
\sum_{\substack{k,\ell,m \in \{1,\ldots,N\}}} \frac{N^3}{C_{k\ell m}} + \frac{N}{h_c}
\end{align*}
parameters, for \(k, \ell, m \in \{1,\ldots,N\} \). The crossing symmetries provide \(N^4 \) constraints, so naive counting suggests that crossing symmetries fix all unknown parameters. This is true in some cases, eg for minimal models.
Remark. Higher point correlators can be calculated analogously to the 4 point case.

3 Minimal Models

Definition. A *minimal model conformal field theory* is a conformal field theory with a finite number of conformal families.

Example. The 2d Ising model at criticality.

Remark. For the purposes of this lecture, we will focus on unitary minimal models.

3.1 Warm-up: Representations of $\mathfrak{su}(2)$

The Lie algebra $^{48}\mathfrak{su}(2)$ has generators J_3 and J_\pm, satisfying

\[
[J_3, J_\pm] = \pm J_\pm \\
[J_+, J_-] = 2J_3
\]

To find representations of $\mathfrak{su}(2)$, we start with a highest weight state $|j\rangle$ with

\[
J_3|j\rangle = j|j\rangle \\
J_+|1\rangle = 0
\]

We can then define a descendant state J^k, where

\[
J_3(J^k |j\rangle) = (j - k)J^k |j\rangle \\
J_+(J^k |j\rangle) = 2 \sum_{\ell=0}^{k-1} J^{k-\ell-1} J_3 J^\ell |j\rangle
\]

By induction, we find

\[
J_+(J^k |j\rangle) = 2 \left(\sum_{\ell=0}^{k-1} (j - \ell) \right) J^{k-1} |j\rangle
\]

This implies that, for $j \in 2\mathbb{N}_0$, the value $k = 2j + 1$ yields a highest weight state, ie

\[
J_+(J^{2j+1} |j\rangle) = 0
\]

The state

\[
|\chi_{2j+1}\rangle := J^2 |j\rangle
\]

is called a *singular vector*. $|\chi_{2j+1}\rangle$ generates a subrepresentation of the highest weight representation generated by $|j\rangle$.

Hilbert Space of States & Unitary Representations
Let $|\psi\rangle$ be a state with conjugate $\langle \psi |$.

\[
J_3 = J_3^\dagger \\
J_\perp = J_{\perp}
\]

and take the normalization

\[
\langle j | j \rangle
\]

(i) For $2j \in \mathbb{N}_0$, if we have

\[
\langle j | J_{+}^{k_1} J_{-}^{k_2} | j \rangle \neq 0
\]

then $k_1 = k_2$. Additionally

\[
\langle \chi_{2j+1} | \chi_{2j+1} \rangle = 0
\]

and

\[
\langle \chi_{2j+1} | J_{+}^{k_1} J_{-}^{k_1} | \chi_{2j+1} \rangle = 0
\]

so that the subrepresentation generated by $|\chi_{2j+1}\rangle$ yields only null states.

We can therefore take our Hilber space of states to be the quotient of our representation by the relations

\[
|\psi\rangle \sim |\psi\rangle + \alpha J_\perp^{k} |\chi_{2j+1}\rangle
\]

That is

\[
\mathcal{H} = \{ J_\perp^{k} |j\rangle \}_{k=0, \ldots, 2j} = \langle j \rangle / \langle |\chi_{2j+1}\rangle \rangle
\]

So we get a finite spin representation of $\mathfrak{su}(2)^{50}$

(ii) Let $j > 0$, $2j \notin \mathbb{N}_0$: We then get a non-finite representation of $\mathfrak{su}(2)$. Pick $k = [2j + 1]$, then

\[
\langle j | J_{+}^{k} J_{-}^{k} | j \rangle = \langle j | J_{+}^{k-1} J_{-}^{k-1} | j \rangle \times k (2j + 1 - k)
\]

We easily see that we get a negative norm state at level $[2j + 1]$, giving us a non-unitary representation of $\mathfrak{su}(2)$.

Observation. • Singular vectors give rise to unitary (finite dimensional) representations of $\mathfrak{su}(2)$.

• Highest weight representations without singular vectors yield (infinite dimensional) non-unitary representations of $\mathfrak{su}(2)$.

^{50}$ Which is, in addition, unitary.
3.2 Reducible Verma Modules & Singular Vectors

We explore highest weight representations of the Virasoro algebra with central charge c. Let $|h\rangle$ be a highest weight state:

$$L_n|h\rangle = 0 \quad \text{for } n > 0$$
$$L_0|h\rangle = h|h\rangle$$

The space of states will then be

$$L_{-(\vec{k})}|h\rangle$$

with inner product.

Definition. A *singular vector* is a descendant state $|\chi\rangle$ with $L_{n}|\chi\rangle = 0$ for all $n > 0$, that is, $|\chi\rangle$ is a highest weight state.

Observation. A singular vector and its descendants are orthogonal to any other state.

Proof. Let $|\chi\rangle$ be a singular vector at level N, so that it has an expansion as

$$|\chi\rangle = \sum_{\vec{k}|\vec{k}|=N} c_{\vec{k}} L_{-(\vec{k})} |h\rangle$$

Then the state

$$\langle \psi | L_{-(\vec{\ell})} |\chi\rangle$$

can only be non-vanishing if ψ is a state at level $N + |\vec{\ell}|$.

Let

$$|\psi\rangle = L_{-(\vec{m})}|h\rangle$$

where $|\vec{m}| = N + |\vec{\ell}|$. Then

$$\langle \psi | L_{text{vect}} |\chi\rangle = \langle h | L_{(\vec{m})} L_{-(\vec{\ell})} |\chi\rangle$$

$$= \langle h | [L_{(\vec{m})}, L_{-(\vec{\ell})}] |\chi\rangle = 0$$

because

$$[L_{(\vec{m})}, L_{-(\vec{\ell})}] = \sum_{\vec{s}} D_{\vec{s}} L_{\vec{s}}$$

where $|\vec{s}| = |\vec{m}| - |\vec{\ell}| = N > 0$.

Reducible Verma Module

Definition. A Verma module $V(c, h)$ is *reducible* if there is a singular vector at some level N, i.e

$$|\chi\rangle = \sum_{\vec{k}|\vec{k}|=N} c_{\vec{k}} L_{-(\vec{k})} |h\rangle$$
such that, for all $n > 0$, $L_n|\chi\rangle = 0$.

In this case, $|\chi\rangle$ is a highest weight state generating a Verma submodule V_χ of $V(c, h)$.

Remark. • $|\chi\rangle$ is a primary state of conformal weight $h + N$, and it is also a descendant state of $|h\rangle$

• V_χ is orthogonal to $V(c, h)$ with respect to the defined inner product.

• Let $V(c, h)$ be a Verma Module with singular vectors $|\chi_i\rangle$, then we can construct irreducible 51 Verma module $M(c, h)$ by quotienting out all Verma submodules

$$M(c, h) = V(c, h)/\sim$$

where

$$|\phi\rangle \sim |\phi\rangle + |\psi\rangle$$

for all $|\phi\rangle \in V(c, h)$ and for all $|\psi\rangle \in \bigoplus_i V_\chi_i$.

• $M(c, h)$ are the building blocks of minimal models.

Singular Vectors & Negative Norm States at Low Levels

Level 0 $\langle h| h\rangle = 1$: normalization condition.

Level 1 $L_{-1}|h\rangle$ has norm

$$\langle h| L_1 L_{-1}|h\rangle = 2h\langle h| h\rangle = 2h$$

so that the *Gram matrix at level 1* is

$$M^{(1)} = (\langle h| L_1 L_{-1}|h\rangle) = (2h)$$

That means we get a null state for $h = 0^{52}$, and a necessary condition for unitary representations is that

$$h \geq 0$$

Level 2 We now have two possible states

$$|\psi_{1,1}\rangle = L_{-1}^2|h\rangle$$

$$|\psi_2\rangle = L_{-2}|h\rangle$$

We can compute the 2×2 Gram matrix at level 2,

$$M^{(2)}(c, h) = \begin{bmatrix} \langle \psi_{1,1}|\psi_{1,1}\rangle & \langle \psi_{1,1}|\psi_2\rangle \\ \langle \psi_2|\psi_{1,1}\rangle & \langle \psi_2|\psi_2\rangle \end{bmatrix}$$

$$= \begin{bmatrix} 4h(2h + 1) & 6h \\ 6h & 4h + \frac{1}{2}c \end{bmatrix}$$

51 See previous note.

52 That is, $L_{-1}|0\rangle$ is a singular vector. This null state corresponds to the vacuum.
We compute that the trace of this matrix is
\[\text{tr} M^{(2)}(c, h) = 8h(h + 1) + \frac{1}{2}c \]
and the determinant\(^{53}\)
\[\det M^{(2)}(c, h) = 32(h - h_{1,1})(h - h_{1,2})(h - h_{2,1}) \]
Each zero of this determinant will correspond to a singular vector. the first,
\[h_{1,1} = 0 \]
corresponds to the singular vector we have already found. The other two
\[h_{1,2} = \frac{1}{16} \left(5 - c - \sqrt{(1 - c)(25 - c)} \right) \]
\[h_{2,1} = \frac{1}{16} \left(5 - c + \sqrt{(1 - c)(25 - c)} \right) \]
are new.

Exercise. There are two singular vectors at level 2, \(|\chi_{1,2}\rangle\) and \(|\chi_{2,1}\rangle\) associated to \(h = h_{1,2}\) and \(h = h_{2,1}\) respectively.

A First Glance at Unitary Representations

We have singular vectors \(h = h_{1,1} = 0\), and
\[h = h_{1,2}, h_{2,1} \Leftrightarrow 1 = \left(\frac{4}{3}h + \frac{2}{3} \right) \left(-\frac{4}{3}h - \frac{c}{6} + \frac{3}{2} \right) \]
\[\frac{5}{8} \]
\[\frac{1}{4} \]
\[c = 1 \]

Unitary repr. still possible from analysis up to level 2, BUT: we expect further constraints.

manifest non-unitary representation (level 1)

\(^{53}\) Known as the Kac determinant.
3.3 Kac Determinants

The Kac determinants are the determinants of the Gram Matrices, and display a number of useful properties:

(i) A singular vector $|\chi\rangle$ at level K yields null states at level $N > K$:

$$L_{-\{\vec{k}\}}|\chi\rangle$$

with $|\vec{k}| = N - K$. Each singular vector at level K therefore yields $p(N - K)^54$ null states at level N.

(ii) The order of the entries of the Gram determinants $M^{(N)}(c, h)$ at level N in h is given by

- Since each element in $L^\dagger_{-\{\vec{k}\}} = L_{\{\vec{k}\}}$ ‘commutes to $L_0’$,

 $$\text{ord}_h \left(\langle h | L^\dagger_{-\{\vec{k}\}} L_{-\{\vec{k}\}} | h \rangle \right) = \text{length}(\vec{k})$$

- For $\vec{k}' \neq \vec{k}$

 $$\text{ord}_h \left(\langle h | L^\dagger_{-\{\vec{k}'\}} L_{-\{\vec{k}\}} | h \rangle \right) < \text{length}(\vec{k})$$

Since now not all generators in $L^\dagger_{-\{\vec{k}\}} = L_{\{\vec{k}\}}$ do not commute to L_0.

This tells us that the diagonal terms in the Gram matrix at level N give rise to the leading contribution in h^{55}:

$$\text{ord}_h \left(\text{det} M^{(N)}(c, h) \right) = \sum_{|\vec{k}|=N} \text{length}(\vec{k})$$

$$= \sum_{r,s \in \mathbb{Z}, 1 \leq r,s, s \cdot r \leq N} p(N - r \cdot s)$$

(iii) At level N we have

$$\# \left((r, s) \mid 1 \leq r, s \text{ and } r \cdot s = N \right)$$

new singular vectors, labelled by $h_{r,s}$

We can compute a formula for the Kac determinants

$$\text{det} M^{(N)}(c, h) = \alpha_N \prod_{r,s \geq 1, r \cdot s \leq N} (h - h_{r,s}(c))^{p(N - r \cdot s)}$$

where α_N is some numerical (non-vanishing) constant independent of h and c.

54 Where $p(m)$ is the number of partitions of m. More precisely, it is the number of distinct non-decreasing sequences of natural numbers which add up to m.

55 The second step of this calculation is a purely number theoretic identity, not a physical principle.
Conjecture (Kac). The values of $h_{r,s}$ and c for minimal models are given by

$$h_{r,s} = \frac{(m+1)r - ms)^2 - 1}{4m(m+1)}$$

$$c(m) = 1 - \frac{6}{m(m+1)}$$

Note. There are two possible solutions for the second equation

$$m_{1/2} = -\frac{1}{2} \pm \sqrt{\frac{25-c}{1-c}}$$

However,

$$h_{r,s}(m_1(c)) = h_{s,r}(m_2(c))$$

We take the Convention that, for m real, we choose $m \in \mathbb{R}_{\geq 0}$

Unitary representations of Vir

We begin with a few observations

(i) For level 1, if

$$\det M^{(1)}(c, h) \geq 0$$

then $h \geq 0$

(ii) $\langle h|L_n^1 L_{-n}|h \rangle = 2nh + \frac{c}{12} n(n^2 - 1) > 0$

This must hold for all n, which implies that $c \geq 0$

(iii) If we consider the Kac determinants $1 < c < 25$, we get that $m_{1/2} \notin \mathbb{R}$, which implies that $h_{r,s} \notin \mathbb{R}$ for $r \neq s$. If $r = s$, then $h_{r,r} < 0$ for $r >$. Similarly, for $c \geq 25$, $h_{r,s} < 0$, so there are no positive solutions for h.

Taken all together, this implies that $\det M^{(k)}$ is non-vanishing and positive definite for $c > 1$ and $h \geq 0$ (see exercises).

(iv) In the region $0 \leq c \leq 1$, $h \geq 0$ we have the Kac determinant

$$96h_{r,s} + 4(1-c) = \left(\sqrt{1-c}(r+s) \pm \sqrt{25-c(r-s)}\right)^2 \geq 0$$

a) near $c = 1$, take $c = 1 - 6\epsilon$. For $r \neq s$

$$h_{r,s}(\epsilon) = \frac{1}{4} (r-s)^2 \pm \frac{1}{4} (r^2 - s^2) \sqrt{\epsilon} + O(\epsilon)$$

For $r = s$

$$h_{r,r} = \frac{1-c}{24} (r^2 - 1)$$

Diagrammatically, we can represent what we know so far about unitary representations and minimal models in a somewhat finer version of the graph from last section:
Returning to the region $0 \leq c < 1$, $h \geq 0$,

- A generic point in this region gives rise to non-unitary representations only.

- Frienan, Qiu, Shenkar, in [8] found unitary representations on 'first intersections'. The idea is that the resulting singular vectors at 'first intersections' are sufficient to make the associated Verma module Unitary. These 'first intersections' are given by precisely the formulae from Kac’s conjecture above, where $1 \leq r < m$ and $1 \leq s < r$

Note. • $h_{r,s}(m) = h_{m-r,m+1-s}(m)$ for $m \in \mathbb{Z}_{\geq 2}$

- We denote the associated conformal families

$$[\phi_{r,s}] \equiv [\phi_{m-r,m+1-s}]$$
We can codify the distinct conformal families with the use of conformal diagrams. For example, when \(m = 2 \), we have \(c = 0 \) \(h_{1,2} = h_{1,2} = 0 \)\(^{57} \) or, diagrammatically

In a more complicated case, we can take \(m = 3 \), so that \(c = \frac{1}{2} \).

Looking at the diagram

we see that

\[
[\phi_{1,1}] = [\phi_{2,3}], \quad h_{1,1} = 0 \\
[\phi_{2,1}] = [\phi_{1,3}], \quad h_{2,1} = \frac{1}{2} \\
[\phi_{2,2}] = [\phi_{1,2}], \quad h_{2,2} = \frac{1}{16}
\]

The conformal diagrams list unitary represenations for a given central charge \(c = c(m) \).

Goal: Construct, for a given \(c(m) \), unitary CFTs constructed from the conformal families associated to unitary representations of the Virasora algebra for the given \(c(m) \). The resulting CFT’s are unitary minimal models.

3.4 Fusion Rules

Singular vectors give rise to selection rules for non-vanishing three point correlators.

\(^{57}\) That is, this minimal model gives the vacuum CFT.
Example. We work at level 2 (cf Exercise 8.3). We have a singular vector
\[(L_{-2} - \frac{3}{2(2h_{2,1} + 1)} L_{-1}^2) |h_{2,1}\rangle = |\chi_{2,1}\rangle \]
with the null field
\[\chi_{2,1}(z) = \phi_{2,1}^{(2)}(z) - \frac{3}{2(2h_{2,1} + 1)} \phi_{2,1}^{(1,1)} \]
where
\[\phi_{2,1}^{(1,1)}(z) = \partial_z^2 \phi_{2,1}(z) \]
Since \(|\chi_{2,1}\rangle\) is singular, we have
\[0 = \langle \chi_{2,1}(z) \phi_1(z_1) \phi_2(z_2) \rangle \]
\[= (L_{-2} - \frac{3}{2(2h_{2,1} + 1)} \partial_{z_2}^2) \langle \phi_{2,1}(z) \phi_1(z_1) \phi_2(z_2) \rangle \]
where
\[C(z, z_1, z_2) = C(z - z_1)^{h_2 - h_1 - h_{2,1}} (z_1 - z_2)^{h_{2,1} - h_1 - h_2} (z_2 - z)^{h_1 - h_{2,1} - h_2} \]
(cf section 2.9). We then have the differential equation for \(C(z, z_1, z_2) \), given by
\[0 = \left(\frac{h_1}{(z_1 - z)^2} - \frac{\partial_{z_1}}{z_1 - z} + \frac{h_2}{(z_2 - z)^2} - \frac{\partial_{z_2}}{z_2 - z} - \frac{3}{2(2h_{2,1} + 1)} \partial_{z_2}^2 \right) \times C(z, z_1, z_2) \]
This gives us a constraint for \(C \neq 0 \):
\[2(h_{2,1} + 1)(h_{2,1} + 2h_2 - h_1) = 3(h_{2,1} - h_1 + h_2)(h_{2,1} - h_1 + h_2 + 1) \]
Inserting \(h_{2,1} = h_{2,1}(m) \), \(h_1 = h_{r,s}(m) \) and \(h_2 = h_{r',s'}(m) \) yields the solution
\[r' = r \pm 1 \quad s' = s \]
So the selection rule is
\[\langle \phi_{2,1} \phi_{r,s} \phi_{r',s'} \rangle \neq 0 \quad \Rightarrow \quad r' = r \pm 1, \quad s' = s \]
\[\langle \phi_{1,2} \phi_{r,s} \phi_{r',s'} \rangle \neq 0 \quad \Rightarrow \quad r' = r, \quad s' = s \pm 1 \]

Fusion rules, on the other hand, summarize the conformal families appearing in the OPE. For a CFT with states [φp], we can define the fusion product:
\[[\phi_p] \times [\phi_j] = \sum N_{k,j}^f [\phi_k] \]
where \(N_{k,j}^f \in \mathbb{Z}_{\geq 0} \). For minimal models in particular, we can go further, and say
\[N_{i,j}^f \in \{0, 1\} \]
The three point selection rules at level 2 then tell us

\[N^{(r',s')}_{(2,1),(r,s)} = 0 \text{ for } (r', s') \neq (r \pm 1, s) \]

and

\[N^{(r',s')}_{(1,2),(r,s)} = 0 \text{ for } (r', s') \neq (r, s \pm 1) \]

A dynamical analysis of minimal models yields\(^5^9\) for a unitary minimal model \(c = c(m)\)

\[
[\phi_{(r,s)}] \times [\phi_{(r',s')}] = \sum_{k=r+r'-1}^{k+r+r' \equiv 1 \mod 2} \sum_{\ell=s+s'-1}^{\ell+s+s' \equiv 1 \mod 2} [\phi_{(k,\ell)}]
\]

3.5 The Critical Ising Model

Recall the Ising model from the first lecture:

We have \(N \times N\) lattice of critical sites:

\[
\begin{array}{ccccccc}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\end{array}
\]

\(\sigma\) spin \(\frac{1}{2}\)

These spins are equipped with a nearest neighbor interaction. The energy for the system is given by

\[
E(\{\sigma\}) = -\epsilon \sum_{\text{adjacent lattice sites}} \sigma_i \sigma_j
\]

where \(\sigma_i \in \{\pm \frac{1}{2}\}\). There are ground states for the system: all states having the same spin (ie either all \(|\uparrow\rangle\) or all \(|\downarrow\rangle\)). The partition function is

\[
Z = \sum_{\{\sigma\}} \exp \left(-E(\{\sigma\})/\beta \right)
\]

where \(\beta = \frac{1}{T}\) is the inverse temperature. The energy at a site is

\[
\epsilon_k = \frac{\epsilon}{q} \sum_{i \in \text{nearest neigh. of } k} \sigma_i \sigma_k
\]
We can take a continuum limit, $a \to 0$, where $Na = \text{const}$. In this case, we get

\[\sigma(z, \bar{z})\] spin field

\[\epsilon(z, \bar{z})\] energy density field

The correlation functions for these fields will be given by

\[
\langle \sigma(z, \bar{z})\sigma(0, 0) \rangle = \lim_{a \to 0 \atop Na = \text{const}} Z^{-1} \sum_\{\sigma\} \sigma_k \sigma_0 e^{-\beta E(\{\sigma\})}
\]

\[
\langle \epsilon(z, \bar{z})\epsilon(0, 0) \rangle = \lim_{a \to 0 \atop Na = \text{const}} Z^{-1} \sum_\{\sigma\} \epsilon_k \epsilon_0 e^{-\beta E(\{\sigma\})}
\]

The Ising model has a critical temperature T_{crit}

\[
\begin{array}{c}
\langle 0 \rangle = \pm 1 \\
0 \\
T_{\text{crit}} \\
\langle \sigma \rangle \simeq 0 \\
T
\end{array}
\]

and the correlator goes as

\[
\langle \sigma(z, \bar{z})\sigma(0, 0) \rangle \sim e^{-|z|/\zeta(T)}
\]

for $T > T_{\text{crit}}$. Where ζ goes as:

At T_{crit}, Onsager showed local conformal invariance, and computed the correlators

\[
\langle \sigma(z, \bar{z})\sigma(0, 0) \rangle = \frac{1}{|z|^{1/4}}
\]

\[
\langle \epsilon(z, \bar{z})\epsilon(0, 0) \rangle = \frac{1}{|z|^2}
\]

with $c = \bar{c} = \frac{1}{2}$.

He also computed the field content of the Ising model60 60 It is a spinless theory, ie $h = \bar{h}$.
\[\sigma(z, \bar{z}) : (h, \bar{h}) = \left(\frac{1}{16}, \frac{1}{16} \right) \text{ spin operator} \]

\[\epsilon(z, \bar{z}) : (h, \bar{h}) = \left(\frac{1}{2}, \frac{1}{2} \right) \text{ energy operator} \]

\[\mathbb{1} : (h, \bar{h}) = (0, 0) \text{ (in any CFT)} \]

The \(m = 3 \) minimal model has \(c = \frac{1}{2} \), and

\[
[\phi_{2,2}] = [\phi_{1,2}] : h_{2,2} = \frac{1}{16} \\
[\phi_{1,1}] = [\phi_{2,3}] : h_{1,1} = 0 \\
[\phi_{2,1}] = [\phi_{1,2}] : h_{2,1} = \frac{1}{2}
\]

The physical 'Ising minimal model' includes the anti-holomorphic sector to match with the operators

\[\sigma(z, \bar{z}) = \phi_{2,2}(z)\phi_{2,2}(\bar{z}) \]

\[\epsilon(z, \bar{z}) = \phi_{2,1}(z)\phi_{2,1}(\bar{z}) \]

The fusion rules for the Ising model can be determined using the order-disorder symmetry and the symmetry

\[\sigma \mapsto -\sigma \]

This yields

\[
[\sigma] \times [\sigma] = [\mathbb{1}] + [\epsilon] \\
[\sigma] \times [\epsilon] = [\sigma] \\
[\epsilon] \times [\epsilon] = [\mathbb{1}]
\]

We would like to determine the 3 point structure constants. From the above, we have

\[C_{\sigma\sigma} = C_{\epsilon\epsilon} = 1 \]

We need to determine \(C_{\sigma\epsilon} \) by dynamics.

To do this, we first examine the leading terms in the Operator Product

\[
\sigma(z)\sigma(0) = \frac{1}{|z|^4} (1 + \cdots + |z|C_{\sigma\sigma}\epsilon(0, 0) + \cdots) \quad (*)
\]

The \(m = 3 \) minimal model has a singular vector at level 2

\[|\chi_{1,2}\rangle = \left(L_{-2} - \frac{4, 3^2}{L_{-1}} \right) |h_{2,2}\rangle \]

\[|\chi_{2,2}\rangle = |\chi_{1,2}\rangle \]

Which implies that

\[
\left(L_{-2} - \frac{4}{3} L_{-1} \right) \langle \sigma(z, \bar{z})\phi_1(z_1, \bar{z}_1) \cdots \phi_N(z_N, \bar{z}_N) \rangle = 0 \quad (**)
\]
We would like to determine the four-point correlation function

\[G_{\sigma \sigma} = \lim_{z, \bar{z} \to \infty} |z|^\frac{3}{4} \langle \sigma(z, \bar{z})\sigma(1, 1)\sigma(\eta, \bar{\eta})\sigma(0, 0) \rangle \]

the idea is to take (**) with \(\phi_1 = \phi_2 = \phi_3 = \sigma \) and derive a differential equation in \(\eta \). We obtain the equation

\[
\left(\eta(1 - \eta) \frac{d^2}{d\eta^2} + \left(\frac{1}{2} - \eta \right) \frac{d}{d\eta} + \frac{1}{16} \right) f_k(\eta) = 0
\]

for \(k = 1, 2 \)\(^{61}\). The matrix element can be expressed in terms of these \(f_k \) as:

\[
G_{\sigma \sigma}(\eta, \bar{\eta}) = \frac{1}{|\eta|\eta(1 - \eta)|\frac{1}{4}} \sum_{k, \ell=1}^{2} c_{k \ell} f_k(\eta) \overline{f_\ell}(\eta)
\]

The solutions \(f_k \) are given by

\[
f_{1/2} = \left(1 \pm \sqrt{1 - \eta} \right)^{\frac{1}{2}}
\]

However, there are multiple branch cuts involved in this definition. Since we want \(G_{\sigma \sigma} \) to be single valued, there is only one choice we can make for the constants \(c_{k \ell} \), which gives us

\[
G_{\sigma \sigma}(\eta, \bar{\eta}) = \frac{C}{|\eta|(1 - \eta)|\frac{1}{4}} \left(|1 + \sqrt{1 - \eta}| + |1 - \sqrt{1 - \eta}| \right)
\]

Expanding around \(\eta = 0 \), we get (to leading order)

\[
G_{\sigma \sigma} = \frac{C}{|\eta|\eta\frac{1}{4}} \left(2 + \frac{1}{2} |\eta| \right) \quad (**)\]

We can also obtain an expression for \(G_{\sigma \sigma} \) using the OPE\(^ {62}\). If we apply (**), we find that

\[
G_{\sigma \sigma} = \lim_{z, \bar{z} \to \infty} |z|^\frac{3}{4} \langle \sigma(z, \bar{z})\sigma(1, 1)\sigma(\eta, \bar{\eta})\sigma(0, 0) \rangle
\]

\[
= \lim_{z, \bar{z} \to \infty} \frac{|z|^\frac{3}{4}}{|\eta|\eta\frac{1}{4}} \left(\langle \sigma(z, \bar{z})\sigma(1, 1) \rangle + |\eta|C_{\sigma \epsilon} \langle \sigma(z, \bar{z})\epsilon(0, 0) \rangle + \cdots \right)
\]

\[
= \lim_{z, \bar{z} \to \infty} \frac{|z|^\frac{3}{4}}{|\eta|\eta\frac{1}{4}} \left(\frac{1}{|z - 1|\frac{1}{4}} + \frac{|\eta|}{\eta} \frac{C_{\sigma \epsilon}^2}{|z - 1|\frac{1}{4} + |\eta|} \right)
\]

\[
= \frac{1}{|\eta|\eta\frac{1}{4}} \left(1 + |\eta|C_{\sigma \epsilon}^2 \right)
\]

Comparing this result with (**), we get that

\[
c = \frac{1}{2}, \quad C_{\sigma \epsilon} = \frac{1}{2}
\]

As a result, we have solved the Ising model by consistency, and the CFT we have found completely determines the dynamics of the system.

\(^{61}\) That is, since this is a second order differential equation (with singular points at 0, 1, and \(\infty \)) we have two linearly independent solutions.

\(^{62}\) And the \(f_k \), which turn out to satisfy the same differential equations.
Remark. Remarkably enough, we did not at any point need a Lagrangian of our theory!

3.6 Minimal Model Characters

The character of a (potentially reducible) Verma module $V(c,h)$ is defined to be64

$$
\chi_{V(c,h)} = q^{h - \frac{c}{24}} \sum_{N=0}^{\infty} \#(N) q^N = q^{h - \frac{c}{24}} \prod_{N=1}^{\infty} (1 - q^N)^{-1}
$$

This last equality means that we can represent the character in terms of the Euler function

$$
\phi(q) = \prod_{n=1}^{\infty} (1 - q^n)
$$

as

$$
\chi_{V(c,h)} = \frac{q^{h - \frac{c}{24}}}{\phi(q)}
$$

Turning our attention to the characters of a unitary minimal model representation $M(c,h)$, we first note that

$$
h_{r,s}(m) = h_{-r,-s}(m) = h_{r,s}(m) = r \cdot s
$$

Additionally, we have a ‘symmetry of indices’ so that

$$
h_{r,s}(m) = h_{-r,-s}(m) = h_{r+2m+1}(m)
$$

We can use these to find out more about our singular vectors from first intersections

<table>
<thead>
<tr>
<th>Singular vectors</th>
<th>Level</th>
<th>Conf. Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\chi_{r,s}\rangle$</td>
<td>$r \cdot s$</td>
</tr>
<tr>
<td>$</td>
<td>\chi_{m-r,m+1-s}\rangle$</td>
<td>$(m-r)(m+1-s)$</td>
</tr>
</tbody>
</table>

The irreducible Verma module is therefore given by

$$
M(c(m),h_{r,s}(m)) = V_{r,s}/(V_{r+m,-s+m+1} \cup V_{r,2(m+1)-s})
$$

To compute the character, we want to subtract contributions from each submodule, but this leads to the possibility of double counting sub-submodules, and so on. We therefore need to look at the structure of submodules:

$$
V_{r,s} = V_{-r,-s} = V_{r+m,s+m+1}
$$

$$
V_{r+m,m+1-s} = V_{-r-m,s-m-1} = V_{m-r,s+(m+1)}
$$

$$
V_{r,2(m+1)-s} = V_{r,s-2(m+1)} = V_{2m-r,s}
$$

so we have

64Where $\#(N)$ is the number of states at level N.\n

These are the only common submodules, but they might have non-trivial intersections.

Considering higher submodule chain structure gives us

\[
\begin{align*}
& V_{m,m+1-s} \supset V_{2m-s} \\
& || \hspace{2cm} || \\
& V_{r,2(m+1)-s} \supset V_{r+m,(m+1)} \cup V_{3m-r,(m+1)-s}
\end{align*}
\]

The character of \(M(c(m), h_{r,s}(m)) \) thus becomes

\[
\chi^{(m)}_{r,s}(q) = \frac{q^{-c/2\pi}}{\phi(q)} \left(q^{h_{r,s}} + \sum_{k=1}^{\infty} (-1)^{k} \left(q^{h_{r+k,(1-k)(s+1)} + \frac{1-(-1)^{k}}{2}(m+1)} \right) \right)
\]

Or, if we define the functions

\[
K_{r,s}^{(m)} = q^{-1/24} \sum_{k \in \mathbb{Z}} q^{(2m(m+1)+r(m+1)-ms) / (4m(m+1))}
\]

then

\[
\chi^{(m)}_{r,s} = K_{r,s}^{(m)} - K_{r,-s}^{(m)}
\]

Remark. \(\chi^{(m)}_{r,s} \) are the generating functions for the (physical) states at level \(N \).

4 Modular Invariance

Up to this point, we have studied CFTs on the conformal plane. We now aim to study CFT's on the 2-torus.

Motivation:

- Consistent 2d CFTs describing critical phenomena should be locally independent of the 2d geometry. In particular, it should be independent of the quantization scheme (on the torus \(T^2 \)).

- In String Theory, CFTs on Riemann surfaces form part of perturbative string theory. \(T^2 \) gives rise to a 1 loop correction term.

\[q^{h_{r,s} - c/24} \]

66 A genus 1 Riemann surface.
4.1 Partition Function

We can consider our map on the punctured plane from section 2.3, and extend it to the torus:

\[H \mapsto \zeta = \frac{L}{2\pi} \log(z) \]

On \(T^2 \), our local symmetries are still the Virasora generators \(L_n \). Our global symmetries, however, are generated by \(L_0 \) and \(T_0 \).\(^{68}\)

Space-time Structure of the Torus

We can obtain the torus as a quotient of the complex plane by a lattice generated by a pair of vectors \(\omega_1 \) and \(\omega_2 \).

Diagrammatically, we take the quotient of:

\(^{68}\) So that the group of symmetries is \(U(1) \times U(1) \), the isometries of \(T^2 \) with the flat metric.
Translations along the cycle are given by
\[
\exp \left(-\frac{a}{|\omega_2|} (H \cdot \Im \omega_2 - iP \Re \omega_2) \right)
\]
Recall (cf. section 2.7) that we calculated the energy momentum tensor for the cylinder:
\[
T_{cyl}(\zeta) = \left(\frac{2\pi}{L} \right)^2 \left(\sum_{n \in \mathbb{Z}} L_n e^{-2\pi n/L \zeta} - \frac{c}{24} \right)
\]
This allows us to compute the operators \(H \) and \(P \):
\[
H = \frac{1}{2\pi} \int_{\omega_1} \left(\frac{2\pi}{L} \right)^2 (L_0 + \mathcal{L}_0 - \frac{c}{12}) = \frac{2\pi}{L} \left(L_0 + \mathcal{L}_0 - \frac{c}{12} \right)
\]
\[
P = \frac{1}{2\pi} \int_{\omega_1} \left(\frac{2\pi}{L} \right)^2 (L_0 + \mathcal{L}_0) = \frac{2\pi}{L} (L_0 + \mathcal{L}_0)
\]
The partition function on \(T^2 \) is then given by
\[
Z(\omega_1, \omega_2) = \text{Tr} \left(\exp \left(- (H \Im \omega_2 - iP \Re \omega_2) \right) \right)
\]
Using the modular parameter \(\tau = \tau_1 + i\tau_2 \) where
\[
\tau_1 = \frac{\Re \omega_2}{\omega_1} = \frac{\Re \omega_2}{L}
\]
\[
\tau_2 = \frac{\Im \omega_2}{\omega_1} = \frac{\Im \omega_2}{L}
\]
the partition function takes the form

\[Z(\tau) = \text{Tr} \left(\exp 2\pi i \left(\tau \left(L_0 - \frac{c}{24} \right) - \tau \left(L_0 - \frac{c}{24} \right) \right) \right) \]

Or

\[Z(\tau) = \text{Tr} \left(q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0 - \frac{c}{24}} \right) \]

where \(q = \exp(2\pi i \tau) \).

Observation. The partition function only depends on the modular parameter \(\tau \) (that is, on the shape of the torus/the twisted gluing condition). No dependence on the size of the torus exists, which is consistent with the conformal property of CFTs.

4.2 Modular Invariance

So far, we have singled out a particular choice of lattice (1-cycles) on \(T^2 \), however, we can think somewhat more generally. Consider the picture:

![Diagram of lattice and modular transformation](image)

It is not hard to see that the lattice \(\Lambda \) generated by \(\omega_1 \) and \(\omega_2 \) will also be generated by \(\omega_1 + \omega_2 \) and \(\omega_1 \), and will be generated by \(\omega_1 + \omega_2 \) and \(\omega_2 \). Consequently, many different choices of initial cycles will give us the same torus.

In general, if \((\omega_2, \omega_1)\) defines the lattice \(\Lambda \subset \mathbb{C} \), then

\[
\begin{bmatrix}
\omega'_2 \\
\omega'_1
\end{bmatrix} = \begin{bmatrix} a & b \\
c & d \end{bmatrix} \begin{bmatrix} \omega_2 \\
\omega_1 \end{bmatrix}
\]

for

\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix} \in SL(2, \mathbb{Z})
\]

describes the same lattice \(\Lambda \).
Under such a transformation, the modular parameter transforms as

\[
\tau' = \frac{a\tau + b}{c\tau + d}
\]

where

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} \in SL(2, \mathbb{Z})/(\mathbb{Z}/2)
\]

Partition functions of consistent CFTs must be modular invariant (i.e., independent of the quantization scheme) due to conformal invariance. Therefore we require that

\[
Z_{CFT}^{T^2}(\tau') = Z_{CFT}^{T^2}(\tau)
\]

for \(\tau' = \frac{a\tau + b}{c\tau + d}\).

The group

\[
PSL(2, \mathbb{Z}) = SL(2, \mathbb{Z})/(\mathbb{Z}/2)
\]

is the modular group of the torus.
References

