Exercises on Conformal Field Theory

Dr. Hans Jockers, Andreas Gerhardus

http://www.th.physik.uni-bonn.de/klemm/cftss16/

-HOME EXERCISES-Due on April 22nd, 2016

H1.1 Anharmonic ratios

(5 points)

We consider conformal invariant ratios in \mathbb{R}^d with d > 2.

a) Given four distinct points x_1, \ldots, x_4 show that the two anharmonic ratios (cross ratios),

$$\frac{|x_1 - x_2| \cdot |x_3 - x_4|}{|x_1 - x_3| \cdot |x_2 - x_4|}, \qquad \frac{|x_1 - x_2| \cdot |x_3 - x_4|}{|x_1 - x_4| \cdot |x_2 - x_3|}, \tag{1}$$

are conformal invariants.

b) Given N distinct points x_1, \ldots, x_N , determine the number of distinct (not necessarily algebraically independent) cross ratios.

Hint: Write $x_{ij} = |x_i - x_j|$ (how many distinct x_{ij} are there?) and consider the monomial m given by

$$m(x_1, \dots, x_N) = \prod_{1 \le i \le j \le N} x_{ij}^{a_{ij}} .$$
 (2)

Argue that conformal invariance of this monomial requires

$$\sum_{j=1}^{i-1} a_{ji} + \sum_{j=i+1}^{N} a_{ij} = 0 \quad \text{for all} \quad i = 1 \dots N .$$
 (3)

c) Argue that there can be at most dN - (d+2)(d+1)/2 algebraically independent cross ratios.

Hint: Compare the number of generators in the conformal group to the number of degrees of freedom of N points.

H1.2 Conformal transformations

(5 points)

Let us examine the group of conformal transformations of the Euclidean space \mathbb{R}^d for d > 2. To this end we first note that the Lie group SO(1, d+1) acts naturally on \mathbb{R}^{d+2}

via multiplication and we equip \mathbb{R}^{d+2} with the metric $\eta_{1,d+1} = \operatorname{diag}(-1,1,\ldots,1)$. Now consider the map

$$\iota: \mathbb{R}^d \to \mathbb{RP}^{d+1},$$

$$x^{\mu} \mapsto \left[\frac{1}{2}(1+|x|^2): x^1: \dots: x^d: \frac{1}{2}(1-|x|^2)\right] \quad \text{with} \quad |x|^2 = \sum_{k=1}^d (x^k)^2,$$
(4)

which embeds Euclidean \mathbb{R}^d in the (d+1)-dimensional projective space \mathbb{RP}^{d+1} . This is the space of lines in \mathbb{R}^{d+2} that pass through the origin, which is obtained by identifying two points $x,y\in\mathbb{R}^{d+2}$ if there is a number $\lambda\in\mathbb{R}^*=\mathbb{R}-\{0\}$ such $x=\lambda\cdot y$. More precisely: Define an equivalence relation \sim on \mathbb{R}^{d+2} by $x\sim y$ if $x=\lambda\cdot y$ for $\lambda\in\mathbb{R}^*$, then

$$\mathbb{RP}^{d+1} = \left(\mathbb{R}^{d+2} - \{0\}\right) / \sim . \tag{5}$$

Hence, elements of \mathbb{RP}^{d+1} are equivalence classes [x] of points $x \in \mathbb{R}^{d+2}$ and we find $[x] = [\lambda x]$ for $\lambda \in \mathbb{R}^*$. Moreover, we define the action of $A \in SO(1, d+1)$ on $[x] \in \mathbb{RP}^{d+1}$ by A([x]) = [Ax]. Together with the map ι we finally obtain an action of SO(1, d+1) on \mathbb{R}^d declared by $\iota(A(x)) = A([\iota(x)])$ for $x \in \mathbb{R}^d$.

- a) Show that the (connected component with the identity of the) Lie group SO(1, d+1) has the same number of generators as the conformal group of \mathbb{R}^d .
 - Hint: Why do the dimensions of SO(1, d+1) and SO(d+2) agree?
- b) Check that ι maps points in \mathbb{R}^d onto the projective light cone of \mathbb{RP}^{d+1} , which is the set of all $[x] \in \mathbb{RP}^{d+1}$ such that $\eta_{1,d+1}(x,x) = 0$. Note: Since $\eta_{1,d+1}(x,x) = 0$ implies $\eta_{1,d+1}(\lambda x, \lambda x) = 0$ for all $\lambda \in \mathbb{R}^*$, this condition is well defined on \mathbb{RP}^{d+1} .
- c) Demonstrate that the SO(1, d+1) matrices

with $\Lambda_{d\times d} \in SO(d)$, r > 0 and $\vec{a}, \vec{b} \in \mathbb{R}^d$, map to rotations, dilatations, translations and special conformal transformations on \mathbb{R}^d , respectively.

We have thus shown that the conformal group of \mathbb{R}^d is SO(1, d+1).

In general the isometry group of the metric $\eta_{p,q} = \operatorname{diag}(-1,\ldots,-1,1,\ldots,1)$ with p times (-1) and q times +1 is denoted as O(p,q), and SO(p,q) is the subgroup of elements with determinant +1.