Exercises on Conformal Field Theory

Dr. Hans Jockers, Andreas Gerhardus

http://www.th.physik.uni-bonn.de/klemm/cftss16/

-HOME EXERCISES-Due on May 13th, 2016

H 4.1 Global conformal transformations in two dimensions (4 points) We want to show that the group $SL(2, \mathbb{C})/\mathbb{Z}_2$ of global conformal transformations in two dimensions — also called the projective special linear group $PSL(2, \mathbb{C})$ — is isomorphic to the restricted four-dimensional Lorentz group $SO_+(1,3)$. Recall that the restricted Lorentz group $SO_+(1,3)$ is the group of linear transformations on a four-vector x^{μ} that leaves the square of the norm $|x^{\mu}|^2 \equiv -(x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2$ invariant and that preserves both orientation of space and of time. Thus, $SO_+(1,3)$ is the component of the Lorentz group connected to the identity.

a) Let H_2 be the (real) vector space of hermitian 2×2 matrices. To any four-vector $x = x^{\mu}e_{\mu}$ in terms of the basis e_{μ} , $\mu = 0, \ldots, 3$, of \mathbb{R}^4 , we associate the hermitian 2×2 -matrix $X = \sum_{\mu=0}^{3} x^{\mu}\sigma_{\mu}$ with σ_0 the identity matrix and $\sigma_1, \sigma_2, \sigma_3$ the Pauli matrices. Show that the map

$$f: \mathbb{R}^4 \to H_2, \ x \mapsto X = \sum_{\mu=0}^3 x^\mu \sigma_\mu ,$$

is a vector space isomorphism, i.e., it is a one-to-one map respecting the vector space structure. Construct the inverse map f^{-1} .

b) First, demonstrate that $|x^{\mu}|^2 = -\det X$. Then show that for any S in $SL(2, \mathbb{C})$ the transformation $X \mapsto S^{\dagger}XS$ is well-defined in H_2 . Furthermore, show that such transformations leave the square of the norm invariant. Argue that any matrix S in $SL(2, \mathbb{C})$ arises from a restricted Lorentz transformation.

Hint: Use the fact that both $SL(2,\mathbb{C})$ and $SO_+(1,3)$ are connected, i.e, that any group element of $SL(2,\mathbb{C})$ and $SO_+(1,3)$ continuously deforms to the identity.

- c) Analyze which $SL(2, \mathbb{C})$ transformations leave the matrix X invariant. Conclude that the group $PSL(2, \mathbb{C}) = SL(2, \mathbb{C})/\mathbb{Z}_2$ is isomorphic to the restricted Lorentz group $SO_+(1, 3)$.
- d) Show that the Möbius transformations

$$z \mapsto \frac{az+b}{cz+d}$$
, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{C})$,

form a group, which is isomorphic to the restricted Lorentz group $SO_+(1,3)$.

H4.2 Three-point correlator revisited

In two dimensions we want to calculate the three-point correlator of three quasi-primary fields $\phi_i(z_i, \bar{z}_i)$ for i = 1, 2, 3 with conformal weight (h_i, \bar{h}_i) using infinitesimal global conformal transformations.

a) For infinitesimal Möbius transformations, i.e.,

$$z \mapsto \frac{(1+c_0/2)z+c_{-1}}{-c_1z+(1-c_0/2)}$$
, c_{-1}, c_0, c_1 infinitesimal,

determine the variation $\epsilon(z)$ of the infinitesimal global conformal transformation

$$z \mapsto \tilde{z} = z + \epsilon(z)$$
.

b) Use the infinitesimal transformation law for global conformal transformations acting on (quasi-)primary fields — i.e.,

$$\delta_{\epsilon,\bar{\epsilon}}\phi(z,\bar{z}) = -\left[h(\partial_z\epsilon(z)) + \epsilon(z)\partial_z + \bar{h}(\partial_{\bar{z}}\bar{\epsilon}(\bar{z})) + \bar{\epsilon}(\bar{z})\partial_{\bar{z}}\right]\phi(z,\bar{z}) ,$$

with $\epsilon(z)$ and $\bar{\epsilon}(\bar{z})$ an infinitesimal and a conjugate infinitesimal Möbius transformation, respectively — to derive differential equations for the three-point correlator

$$\langle \phi_1(z_1, \bar{z}_1) \phi_2(z_2, \bar{z}_2) \phi_3(z_3, \bar{z}_3) \rangle$$
.

Here, ϕ_i , i = 1, 2, 3, are quasi-primary fields with conformal weight (h_i, \bar{h}_i) .

c) Use the derived differential equations to derive the three-point correlator:

$$\langle \phi_1(z_1, \bar{z}_1)\phi_2(z_2, \bar{z}_2)\phi_3(z_3, \bar{z}_3) \rangle$$

$$= \frac{C_{123}}{z_{12}^{h_1+h_2-h_3} z_{13}^{h_1+h_3-h_2} z_{23}^{h_2+h_3-h_1} \bar{z}_{12}^{\bar{h}_1+\bar{h}_2-\bar{h}_3} \bar{z}_{13}^{\bar{h}_1+\bar{h}_3-\bar{h}_2} \bar{z}_{23}^{\bar{h}_2+\bar{h}_3-\bar{h}_1}}$$

with
$$z_{ij} = z_i - z_j$$
 and $\bar{z}_{ij} = \bar{z}_i - \bar{z}_j$.

Hint: Determine the three-point correlator in three steps: First show that the holomorphic part of the correlator is a function of z_{12} and z_{13} only. In the next step constrain this function further to the form $g(z_{12}/z_{13})z_{12}^{-h_1-h_2-h_3}$. Finally, determine the function $g(z_{12}/z_{13})$, which allows you to derive the anticipated result for (the holomorphic part of) the correlator.

(6 points)