(2 points)

(4 points)

Exercises on Conformal Field Theory

Dr. Hans Jockers, Andreas Gerhardus

http://www.th.physik.uni-bonn.de/klemm/cftss16/

-HOME EXERCISES-Due on June 17th, 2016

H 8.1 Inner product of descendant states

Show that the norm squared of the descendant state $L_{-1}^n |h\rangle$ of the (normalized) primary state $|h\rangle$ of conformal weight h is

$$\langle h | (L_{-1}^n)^{\dagger} L_{-1}^n | h \rangle = 2^n n! \prod_{\ell=1}^n \left(h + \frac{\ell - 1}{2} \right) .$$

H 8.2 Singular vectors

We want to determine the singular vectors at level 2.

- a) Show that a vector $|\chi\rangle$ is singular (i.e., $L_n |\chi\rangle = 0$ for all $n \ge 1$), if $L_1 |\chi\rangle = 0$ and $L_2 |\chi\rangle = 0$.
- b) Determine the two singular vectors at level 2.

Hint: Start with a general ansatz for a descendant state at level 2 of a primary state $|h\rangle$.

H 8.3 Gram matrix at level 3

(4 points)

Let us consider a (normalized) primary state $|h\rangle$ in a conformal field theory with central charge c.

- a) Determine a basis of descendant states at level 3 and calculate the Gram matrix $M^{(3)}(h,c)$.
- b) Consider the Kac determinant at level 3, i.e., the determinant of $M^{(3)}(h,c)$. Check that the eigenvalue h = 0 appears with the expected multiplicity and — by taking into account the previous problem — speculate on the number of singular vectors at level 3.

Hint: To answer these questions, there is no need to explicitly calculate the determinant.