Exercises on Conformal Field Theory

Dr. Hans Jockers, Andreas Gerhardus

http://www.th.physik.uni-bonn.de/klemm/cftss16/

-HOME EXERCISES-Due on June 24th, 2016

H 9.1 Positive definiteness of the Gram matrices for c > 1 and $h \gg 0$ (6 points) We want to argue that for sufficiently large conformal weights h and for c > 1 the Gram matrices $M^{(K)}(h, c)$ are positive definite.

a) Show that the the entries of the Gram matrix obey the asymptotic behavior

$$\begin{split} \langle h | L_{-\{\vec{k}\}}^{\dagger} L_{-\{\vec{k}\}} | h \rangle &= c_{\vec{k}} h^{\ell(\vec{k})} + \mathcal{O}(h^{\ell(\vec{k})-1}) \quad \text{with} \quad c_{\vec{k}} > 0 \ , \\ \langle h | L_{-\{\vec{k}'\}}^{\dagger} L_{-\{\vec{k}\}} | h \rangle &= \mathcal{O}(h^{\min\{\ell(\vec{k}'),\ell(\vec{k})\}}) \ , \\ \langle h | L_{-\{\vec{k}'\}}^{\dagger} L_{-\{\vec{k}\}} | h \rangle &= \mathcal{O}(h^{\ell(\vec{k})-1}) \quad \text{for} \quad \vec{k}' \neq \vec{k} \quad \text{and} \quad \ell(\vec{k}) = \ell(\vec{k}') \end{split}$$

in terms of the operators $L_{-\{\vec{k}\}} \equiv L_{-k_1} \dots L_{-k_n}$ with the vectors \vec{k} and $\vec{k'}$ of length $\ell(\vec{k}) = n$ and $\ell(\vec{k'}) = n'$ with the usual ordering convention $k_1 \leq k_2 \leq \dots \leq k_n$ and $k'_1 \leq k'_2 \leq \dots \leq k'_n$.

Notation: $p(h) = O(h^n)$ denotes that the polynomial p(h) is at most of degree n.

b) Exemplify for the Gram matrix $M^{(4)}(h,c)$ at level K = 4 that the above conditions are sufficient to argue that the matrix $M^{(4)}$ is positive definite for sufficiently large conformal weight h. (2 points)

Hint: Use Sylvester's criterion for positive definite Hermitian matrices, i.e., a Hermitian matrix M of dimension $n \times n$ is positive definite, if and only if all leading principal minors m_k with k = 1, ..., n are positive. The leading principal minors m_k are the determinants of the $k \times k$ upper left sub-matrices of M.

c) Show that for any level K there is a sufficiently large h such that the Gram matrix $M^{(K)}(h,c)$ is positive definite as a consequence of the asymptotic behavior of its entries. (1 point)

H 9.2 Fusion rules of the tricritical Ising model (4 points) The unitary minimal model with $c = \frac{7}{10}$ (m = 4) can be identified as the tricritical Ising model. We want to determine its conformal families, their fusion rules, and identify a subset of conformal families that closes with respect to the fusion rules.

a) Conformal families and fusion rules

(3 points)Write down the field content of the unitary minimal model of central charge $c = \frac{7}{10}$ (m = 4). Further, list all fusion rules.

b) Closed subset of conformal families Determine a (proper and non-trivial) subset of conformal families that is closed with respect to the fusion rules that you found in the previous item.

(1 point)