Tutorial Dualities in Field and String Theory

1.) Instantons

Consider the D-dimensional Euclidean action

$$S[A] = \frac{1}{4} \int d^D x \operatorname{tr} F_{\mu\nu} F^{\mu\nu}$$

of a (non-Abelian) gauge boson A_{μ} . Show that there can only be non-trivial stationary instanton solutions of S[A] in D = 4 dimensions unless S[A] = 0. *Hint: Use similar scaling argument as in Derrick's theorem.*

2.) Properties of homotopy group

a) Given two spaces X and Y, show that the homotopy groups obey:

$$\pi_q(X \times Y) = \pi_q(X) \times \pi_q(Y)$$

- b) Determine the fundamental group $\pi_1(S^1)$ of the circle S^1 , and determine the fundamental group $\pi_1(T^n)$ of the *n*-torus T^n .
- c) Given an example of a two-dimensional topological space with a non-Abelian fundamental group.
- d) Show that the groups $\pi_q(X)$ for any topological space X are Abelian for q > 1. Hint: Use the graphical group operation of q-cubes I^q discussed in the lecture to argue that the multiplication of two group elements commutes for q > 1.

3.) Skyrmions of the $SU(2) \times SU(2)$ pion model

We consider in four space-time dimensions the $SU(2) \times SU(2)$ pion model spontaneously broken to the diagonal $SU(2)_D$. We want to show that this theory has Skyrmion solutions that are topologically classified by $\pi_3((SU(2) \times SU(2))/SU(2)_D) = \mathbb{Z}$.

- a) Show that the homogeneous space $(SU(2) \times SU(2))/SU(2)_D$ is naturally identified with the Lie group SU(2) with the identity element e of the Lie group SU(2) as a canonical marked point. Which elements of $SU(2) \times SU(2)$ correspond to this marked point in the coset $(SU(2) \times SU(2))/SU(2)_D$?
- b) Show that the Lie group SU(2) is topologically the three sphere S^3 . Then infer with the help of $\pi_3(S^3) = \mathbb{Z}$ the topological classification of Skyrmions in the $SU(2) \times SU(2)$ pion model.

2 pt

3 pt

4.) Hopf fibration

We want to show that there exist interesting solutions in D = 3 for a field ϕ taking values in S^2 , classified by $\pi_3(S^2) = \mathbb{Z}$.

a) A fibration is a map $\pi : X \to B$ satisfying the homotopy lifting property: Given a map $f : Y \to X$ from any topological space Y into X and given a map $\bar{g} : Y \to B$ homotopic to $\bar{f} = \pi \circ f : Y \to B$, then there exists a map g homotopic to f such that $\bar{g} = \pi \circ g$.

In such a fibration, the space B is called the *base space* of the fibration. For a base space with marked point * the space $\pi^{-1}(*)$ is called the *fiber* F, whereas for any x in B, $F_x = \pi^{-1}(x)$ is called the *fiber over* x. With this terminology the fibration is conveniently written as $F \hookrightarrow X \xrightarrow{\pi} B$.

Derive an explicit expression for the so-called Hopf fibration $S^1 \to S^3 \xrightarrow{\pi} S^2$ starting from the representation S^3 : $\{(z_1, z_2) \in \mathbb{C} : |z_1|^2 + |z_2|^2 = 1\}$.

Hint: Consider a projection π that forgets an (obvious) U(1) factor.

b) For a fibration (assuming B is path connected), one has a long exact sequence of homotopy groups

$$\ldots \to \pi_n(F) \to \pi_n(X) \to \pi_n(B) \to \pi_{n-1}(F) \to \ldots$$

called the *exact homotopy sequence*. Recall that an exact sequence of groups is a concatenation of group homomorphisms such that the image of each map is the kernel of the subsequent map.

Starting form the Hopf fibration $S^1 \to S^3 \to S^2$, show that $\pi_3(S^2) = \pi_2(S^2) = \mathbb{Z}$ (using $\pi_3(S^3) = \mathbb{Z}$).