Tutorial Dualities in Field and String Theory

1.) Moduli space of elliptic curves

We want to determine the complex structure moduli space of elliptic curves

$$E = \mathbb{C}/\Lambda$$
,

given in terms of the rank two lattice $\Lambda \subset \mathbb{C}$ generated by $\omega_1, \omega_2 \in \mathbb{C}$, that is to say the lattice Λ is given by $\Lambda = \{ n_1 \omega_1 + n_2 \omega_2 \in \mathbb{C} \mid (n_1, n_2) \in \mathbb{Z}^2 \}.$

a) Two elliptic curves E and E' have the same complex structure, if there is a holomorphic map f : E → E'. Show that such a map lifts in the covering space C to an affine map f̃ : C → C, z ↦ α z + β.
Hint: Use Lieuwille's theorem which says that every bounded holomorphic function.

Hint: Use Liouville's theorem, which says that every bounded holomorphic function defined on \mathbb{C} must be constant.

b) Use the result of a) to show that two elliptic curves E and E' associated to two lattices Λ and Λ' have the same complex structure if and only if $\tau = \frac{\omega_1}{\omega_2}$ and $\tau' = \frac{\omega'_1}{\omega'_2}$ are related by a $PSL(2,\mathbb{Z})$ transformation:

$$\tau' = \frac{a\tau + b}{c\tau + d} \quad \text{with} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$$

Remark: Choose always lattice generators ω_1 and ω_2 such that $\operatorname{Im} \tau > 0$.

- c) Argue that the space of complex structures (called "complex structure moduli space") of elliptic curves are described by the orbits of τ under $PSL(2,\mathbb{Z})$.
- d) The $PSL(2,\mathbb{Z})$ orbit space of complex structures is a one-dimensional complex manifold except at two points, where the local structure is that of a disk divided by the action of a finite cyclic group \mathbb{Z}_k of rotations. Such points are called orbifold points. Identify these two points in the fundamental domain \mathbb{F} and determine their cyclic orbifold group \mathbb{Z}_k . Which elements of $PSL(2,\mathbb{Z})$ generate these two cyclic groups?
- 2.) Adjoint representations of the restricted Lorentz group 2 pt The adjoint representation of the restricted Lorentz group $SO^+(1,3)$ is generated by antisymmetric tensors $L_{\mu\nu} = -L_{\nu\mu}$. Express the adjoint representation of the Lorentz group in terms of the $\mathfrak{su}_2 \times \mathfrak{su}_2$ spin labels (j, j') of $\mathfrak{sl}_2\mathbb{C}$ as introduced in the lecture.

3.) Little group of $SL(2,\mathbb{C})$

3 pt

Let k_{μ} be a four-vector with $k^0 > 0$, $k^{\mu}k_{\mu} = M^2 \ge 0$. Prove that the little group of k_{μ} – which is the subgroup of $SL(2, \mathbb{C})$ that leaves k_{μ} invariant – is isomorphic to

- a) SU(2) for $M^2 > 0$ or
- b) \tilde{E}_2 for $M^2 = 0$.

Here $E_2 \simeq SO(2) \ltimes \mathbb{R}^2$ is the two-dimensional Euclidean group and $\tilde{E}_2 \simeq Spin(2) \ltimes \mathbb{R}^2$ its double cover.

Hint: Choose a convenient k^{μ} in each case and examine the action of $SL(2, \mathbb{C})$ on the bispinor $\sigma^{\mu}k_{\mu}$, where $\sigma^{\mu} = (1, \vec{\sigma})$ in terms of the Pauli matrices $\vec{\sigma}$.

5 pt