Tutorial Dualities in Field and String Theory

1.) Supersymmetric quantum mechanics

The supersymmetry algebra of quantum mechanics is given by

$$\{Q, Q^{\dagger}\} = 2H$$
, $\{Q, Q\} = 0$, $[Q, H] = 0$,

where Q is the (fermionic) supercharge and H the Hamiltonian.

- a) Show that the quantum mechanical supersymmetry algebra implies a positive energy spectrum.
- b) If we diagonalize H by $H |n\rangle = E_n |n\rangle$, what is the structure of the energy eigenspaces. Distinguish between the possibilities $E_n > 0$ and $E_n = 0$.
- c) Using the results of b) to describe the Witten index

$$\operatorname{Tr}\left[(-1)^F e^{-\beta H}\right]$$

of supersymmetric quantum mechanical system. Here β is the inverse temperature and F is the fermion number obeying $\{Q, (-1)^F\} = \{Q^{\dagger}, (-1)^F\} = 0$.

What is the temperature dependence of the Witten index in supersymmetric quantum mechanical systems? What are the implications for a supersymmetric system with a vanishing Witten index?

2.) Casimir operators of the N = 1 super Poincaré algebra 5 pt The Casimir operators of the Poincaré algebra are the mass operator $P^2 = P_{\mu}P^{\mu}$ and the square $W^2 = W_{\mu}W^{\mu}$ of the Pauli-Lubansky operator

$$W_{\mu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} P^{\nu} L^{\rho\sigma} ,$$

which is given in terms of the translation and Lorentz generators P_{μ} and $L_{\mu\nu}$.

- a) Show that W^2 is not a Casmir operator of the N = 1 Super-Poincaré algebra.
- b) Show that P^2 and C^2 are the actual Casimir operators of the N = 1 Super-Poincaré algebra, where

$$C^{2} = C_{\mu\nu}C^{\mu\nu}$$
, $C_{\mu\nu} = B_{\mu}P_{\nu} - B_{\nu}P_{\mu}$, $B_{\mu} = W_{\mu} - \frac{1}{4}\bar{Q}_{\dot{\alpha}}\bar{\sigma}_{\mu}^{\dot{\alpha}\beta}Q_{\beta}$

Hint: Compute the commutators $[W_{\mu}, Q_{\alpha}]$ and $[\bar{Q}_{\dot{\alpha}} \bar{\sigma}^{\dot{\alpha}\beta}_{\mu} Q_{\beta}, Q_{\gamma}]$.

3.) Supersymmetric equations of motion

In the lecture, we considered the on-shell supersymmetry transformations

$$\delta_{\xi}\phi \,=\, \sqrt{2}\xi^{\alpha}\psi_{\alpha} \ , \qquad \delta_{\xi}\psi_{\alpha} \,=\, \sqrt{2}\sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\xi}^{\dot{\alpha}}P_{\mu}\phi \ ,$$

of a massless chiral multiplet (ϕ, ψ_{α}) . Use these supersymmetry transformation rules to show that the massless Dirac equations

$$\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu}\psi^{\alpha} = 0 ,$$

implies the massless Klein-Gordon equation

$$P_{\mu}P^{\mu}\phi = 0 .$$

2 pt