Exercises on General Relativity and Cosmology

Dr. Hans Jockers, Prof. Dr. Hans-Peter Nilles

http://www.th.physik.uni-bonn.de/klemm/gr_15/

-HOME EXERCISES-Due on April 20, 2015

H 2.1 The Lorentz group

(15 points)

We consider four-dimensional Minkowski space $\mathbb{R}^{1,3}$, which is \mathbb{R}^4 equipped with the Minkowski metric η . This is a symmetric, non-degenerate bilinear form $\eta : \mathbb{R}^4 \times \mathbb{R}^4 \longrightarrow \mathbb{R}$ defined by

$$\eta(e_{\mu}, e_{\nu}) \equiv \eta_{\mu\nu} = \begin{cases} -1 & \text{for } \mu = \nu = 0\\ +1 & \text{for } \mu = \nu = 1, 2, 3 \end{cases}$$
(1)

for the standard orthonormal basis $\{e_0, e_1, e_2, e_3\}$ on \mathbb{R}^4 . Using linearity we then find

$$\eta(x,y) = x^{t} \cdot \tilde{\eta} \cdot y \quad \text{for } x, y \in \mathbb{R}^{1,3}, \tag{2}$$

where $\tilde{\eta}$ is a matrix with entries $\eta_{\mu\nu}$. From now, we identify $\tilde{\eta}$ and η with each other and do not distinguish between them.

For $x, y \in \mathbb{R}^{1,3}$ we write $x \cdot y = \eta(x, y)$ and $x^2 = x \cdot x$. The postulates of special relativity imply that transformations Λ relating two inertial frames, so called Lorentz transformations, preserve the spacetime distance, i.e.

$$(x-y)^2 = (\Lambda(x-y))^2 \quad \text{for all} \quad x, y \in \mathbb{R}^{1,3}.$$
(3)

This leads to the definition of the Lorentz group

$$O(1,3) = \{\Lambda \in GL(4,\mathbb{R}) \,|\, \Lambda^{t}\eta\Lambda = \eta\}.$$
(4)

- a) Show that $\Lambda \in O(1,3)$ indeed fulfills eq. (3). (1 point)
- b) Show that O(1,3) indeed is a group. (3 points)
- c) Show that $\Lambda^t \eta \Lambda = \eta$ written in components reads $\eta_{\rho\sigma} \Lambda^{\rho}{}_{\mu} \Lambda^{\sigma}{}_{\nu} = \eta_{\mu\nu}$. (1 point)
- d) Embed the group of three-dimensional rotations into O(1,3). (1 point)
- e) Show that $|\Lambda_0^0| \ge 1$ and that $|\det \Lambda| = 1$. With this argue that the Lorentz group consists of four branches (which are not continuously connected to each other). Hint: Use $\det(\mathbb{1} + \epsilon \lambda) = 1 + \epsilon \operatorname{tr} \lambda + \mathcal{O}(\epsilon^2)$. (3 points)
- f) Show that the subset $SO^+(1,3) = \{\Lambda \in O(1,3) | \det \Lambda = 1, \Lambda^0_0 \ge 1\}$ forms a subgroup of O(1,3), called the *proper orthochronous Lorentz group.* (2 points)

g) Identify the Lorentz transformations for time and parity reversal and relate them to the respective branches. (1 point)

Consider two inertial frames, K and K'. When K' moves in K with velocity v in positive x_1 direction, the Lorentz transformation from K to K' is (c = 1)

$$\Lambda_{x_1}(v) = \begin{pmatrix} \gamma & -\gamma \cdot v & 0 & 0\\ -\gamma \cdot v & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(5)

Transformation of this type are called *boosts*. We introduce the rapidity ϕ by $v = \tanh \phi$.

- h) Rewrite $\Lambda_{x_1}(v)$ from eq. (5) in terms of the rapidity. (1 point)
- i) Consider two successive boost, both in the x_1 direction but with different velocities. Find the rapidity of the composite boost. Deduce the relativistic rule for addition of velocities. (2 points)

H 2.2 Classical electrodynamics In this exercise we consider the field theoretical formulation of classical electrodynamics. The electromagnetic field is described in terms of a vector field

$$A: \mathbb{R}^{1,3} \longrightarrow \mathbb{R}^{1,3},\tag{6}$$

 $(15 \ points)$

with components A^{μ} . These are related to the components of the field strength tensor F via

$$F_{\mu\nu} = \frac{\partial}{\partial x^{\mu}} A_{\nu} - \frac{\partial}{\partial x^{\nu}} A_{\mu}.$$
 (7)

The particles of mass m_i and charge q_i are described by their trajectories,

$$x_i: I_k \subset \mathbb{R} \longrightarrow \mathbb{R}^{1,3} \quad \text{for } i = 1, ..., N = \text{number of particles}$$

$$\sigma_i \longmapsto x_i(\sigma_i), \tag{8}$$

which are parameterised by an arbitrary curve parameter σ_i and whose components are x_i^{μ} . The action is

$$S[x_i, A] = -\sum_{i=1}^{N} \int_{I_k} \mathrm{d}\sigma_i \left(m_i \sqrt{-\eta_{\alpha\beta} \dot{x}_i^{\alpha}(\sigma_i) \dot{x}_i^{\beta}(\sigma_i)} - q_i A_{\alpha}(x_i(\sigma_i)) \dot{x}_i^{\alpha} \right)$$
(10)

$$-\frac{1}{4}\int_{\mathbb{R}^{1,3}} \mathrm{d}^4 x \, F_{\alpha\beta}(x) F^{\alpha\beta}(x),\tag{11}$$

where $\dot{x}_i = \frac{d}{d\sigma_i} x_i$ and integration on Minkowski space is the same as on \mathbb{R}^4 .

- a) Shortly comment on the significance of each term in S. (1 point)
- b) Take the variation of S with respect to x_i^{μ} in order to derive the Einstein-Lorentz equation (2 points)

$$m_i \frac{\mathrm{d}}{\mathrm{d}\sigma_i} \frac{\dot{x}_i^{\mu}(\sigma_i)}{\sqrt{-\eta_{\alpha\beta} \dot{x}_i^{\alpha}(\sigma_i) \dot{x}_i^{\beta}(\sigma_i)}} = q_i F^{\mu}_{\ \nu}(x_i(\sigma_i)) \dot{x}_i^{\nu}.$$
 (12)

c) Rewrite the second term in S, the term where q_i appears, in terms of the chargecurrent density (1 point)

$$j^{\mu}(x) = \sum_{i=1}^{N} q_i \int d\sigma_i \,\delta^{(4)}(x - x_i(\sigma_i)) \,\dot{x_i}^{\mu}(\sigma_i).$$
(13)

d) Take the variation of S with respect to A_{μ} to derive the inhomogenous Maxwell's equations (2 points)

$$\frac{\partial}{\partial x^{\mu}}F^{\nu\mu}(x) = j^{\nu}(x). \tag{14}$$

e) Use the definition of the field strength tensor, eq. (7), to show the homogenous Maxwell's equations (2 points)

$$\frac{\partial}{\partial x^{\alpha}}F_{\mu\nu} + \frac{\partial}{\partial x^{\mu}}F_{\nu\alpha} + \frac{\partial}{\partial x^{\nu}}F_{\alpha\mu} = 0.$$
(15)

Now take $A^{\mu} = (\phi, \vec{A})$ with ϕ and \vec{A} such that $\vec{B} = \operatorname{rot} \vec{A}$ and $\vec{E} = -\operatorname{grad} \phi - \dot{\vec{A}}$. Further, $j^{\mu} = (\rho, \vec{j})$ with the charge-density ρ and current-density \vec{j} .

- f) Express the components of the field strength tensor, $F_{\alpha\beta}$, in terms of the components of the electric and magnetic field, \vec{E} and \vec{B} . (1 point)
- g) Show that eq. (14) indeed gives the inhomogenous Maxwell's equations: (2 points)

div
$$\vec{E} = \rho$$
, rot $\vec{B} - \vec{E} = \vec{j}$. (16)

h) Show that eq. (15) indeed gives the homogenous Maxwell's equations: (2 points)

$$\operatorname{div} \vec{B} = 0, \qquad \operatorname{rot} \vec{E} + \vec{B} = 0.$$
(17)

i) Parameterise eq. (12) by time, i.e. $\sigma = x^0 = t$, and show that it reduces to (2 points)

$$m\frac{\mathrm{d}}{\mathrm{d}t}\frac{\vec{v}}{\sqrt{1-v^2}} = q\left(\vec{E}+\vec{v}\times\vec{B}\right).$$
(18)