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H 3.1 Temporal order of events in relativity (6 points)
An observer sees three events in the order ABC, whereas a second observer sees them in
order CBA.

a) In two-dimensional (1+1) Minkowski space, can there be a third observer for whom
the events appear in order ACB? Argue for your answer, for example by drawing a
spacetime diagram. (4 points)

b) Does this carry over to higher-dimensional Minkowski space? (2 points)

H 3.2 Linear algebra, indices and tensors (15 points)
In this exercise we want to review some basics of linear algebra, familiarize ourselves with
the meaning of upper and lower indices and with the notion of tensors. The applications
to relativity are subject of H 3.3.
Consider a real vector space V of dimension n < ∞. For any vectorspace we define its
dual vector space by V ∗ = {w : V → R |w linear}. Upon introduction of a basis on V ,
B1 = {ei ∈ V | i = 1, ..., n}, any vector v ∈ V can be expanded in this basis. This means
that there are unique numbers vi, i = 1, . . . , n for which

v =
n∑
i=1

viei ≡ viei (1)

holds. The numbers vi are referred to as the components of v in the basis B1 and one
sometimes identifies the list of numbers vi with the vector v. This, however, works only
as long as a specific basis is fixed, whereas the vector v itself exists independently of any
basis. Once a basis of V has been chosen, there is a natural choice of basis of V ∗. This is
the dual basis B∗1 = {ei ∈ V ∗ | i = 1, ..., n} defined by

ei (ej) = δij ∀i, j ∈ {1, ..., n}. (2)

Now, any w ∈ V ∗ can be written as

w =
n∑
i=1

wie
i ≡ wie

i, (3)

in terms of unique numbers wi, i = 1, . . . , n.
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a) Show that a dual vector is uniquely specified by its values on a basis of V , hence
eq. (2) indeed specifies a set of dual vectors. Further show that B∗1 is indeed a basis
of V ∗, from which we deduce V ' V ∗. (2 points)

b) Let B2 = {ẽi ∈ V | i = 1, ..., n} be a second basis of V and B∗2 = {ẽi ∈ V ∗ | i = 1, ..., n}
the associated dual basis. Write ei = (ei)

j ẽj and ei = (ei)j ẽ
j. Relate the components

of v ∈ V in B1 (and of w ∈ V ∗ in B∗1) to those in B2 (and B∗2). (1 point)

c) With the same v and w, calculate w(v) in both bases. Does the result depend on the
basis? Deduce (1 point)

(ei)k(ej)
k = δij. (4)

d) Let us now consider the bidual space (V ∗)∗, which is the dual space of the dual space.
Show that

α : V −→ (V ∗)∗

v 7−→ α(v) defined by (α(v))(w) = w(v) for all w ∈ V ∗
(5)

is an isomorphism of vectorspaces. For surjectivity use that for linear maps the
formula dimV = dim (kerα) + dim (imα) holds. (2 points)

Since α does not make reference to any basis, it is called a canonical isomorphism. Thus
V and (V ∗)∗ are regarded as the same space and are not distinguished.
Although we know V ' V ∗ as well, there is in general no preferred choice of isomorphism
between V and V ∗. The situation changes if V is equipped with a symmetric non-degnerate1

bilinear form β : V × V −→ R. Then it is natural to define the isomorphisms

φ1 : V −→ V ∗

v 7−→ φ1(v) = β(v, ·), declared by (φ1(v))(w) = β(v, w) for all w ∈ V,
φ2 : V ∗ −→ V

w 7−→ φ2(w) defined by β(φ2(w), v) = w(v) for all v ∈ V.

(6)

Write βij = β(ei, ej) and define the numbers βij by βijβjk = δij.

e) Show that the components of φ1(v) in B∗1 are related those in B1 by (1 point)

φ1(v)i = βijv
j. (7)

f) Show φ2 ◦ φ1 = idV and φ1 ◦ φ2 = idV ∗ . Deduce that the components of φ2(w) in B1

are related to those of w in B∗1 by (2 points)

φ2(w)i = βijwj. (8)

This allows for changing back and forth between V and V ∗. Application of φ1 is called
lowering an index and application of φ2 raising an index.

1This is to ensure that φ1 and φ2 are isomorphisms.
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So far we have encountered two objects, vectors (referred to as contravariant) and dual
vectors (referred to as covariant). Let us now look at a generalization: A (k, l)-tensor T
(k times contra- and l times covariant) is a multilinear map

T : V ∗ × . . .× V ∗︸ ︷︷ ︸
k times

×V × . . .× V︸ ︷︷ ︸
l times

−→ R, (9)

and the space of (k, l)-tensors is denoted T k,l. The components of T with respect to the
bases B1 and B∗1 are

T i1...ik j1...jl ≡ T (ei1 , . . . , eik , ej1 , . . . , ejl). (10)

The order of indices is significant, because T may answer differently on different arguments.
Upper (lower) indices can be lowered (raised) with φ1 (φ2).

g) What type of tensors are scalars, dual vectors and β? What type of tensors are
vectors and why is that so? (1 point)

h) Why is a tensor uniquely specified by its components? (1 point)

i) Find a basis of T k,l in terms of the basis vectors in B1 and B∗1. What is the dimension
of T k,l? (2 points)

j) Relate the components of T in B1 and B∗1 to those in B2 and B∗2. (2 points)

H 3.3 Application to relativity (9 points)
In special relativity spacetime M = R1,3 is equipped with the Minkowski metric η.

a) What object in H 3.2 is η associated to? (0.5 points)

Since η is of Lorentzian signature, i.e. it has one negative and three positive eigenvalues,
the indices are denoted by Greek and not Latin letters (which are reserved for Euclidean
signature).

b) Why can spacetime not play the role of V in general relativity? (1 point)

Instead, the tangent space TpM at the point p ∈M plays the role of V (pointwise). Given
coordinates on a patch U ⊂ M around p, xµ : U −→ R4 with µ = 1, . . . , 4, the tangent
space is spanned by the partial derivates with respect to the coordinates, i.e. ∂µ = ∂

∂xµ
.

The duals of ∂µ are denoted by dxµ, they are elements of the cotangent space T ∗pM .

c) Does µ in xµ label a vector or dual vector component, or a set of maps? (0.5 points)

d) What object in H 3.2 is ∂µ associated to? (1 point)

In special relativity it is convenient to work with inertial frames. Consider two inertial
frames — frame A with coordinates xµ and frame B with yµ — that are related by a
Lorentz transformation yµ = Λµ

ν x
ν .

e) Express ∂′µ = ∂
∂yµ

in terms of the ∂µ. (2 points)

f) In item b) of H 3.2 we have looked at a change of basis. What is the analog to this
here: The change from xµ to yµ or from ∂µ to ∂′µ? (1 point)
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g) Express dyµ (the dual of ∂′µ) in terms of the dxµ. (1 point)

h) Let the components of a (k, l)-tensor T in frame A be T µ1...µk
ν1...νl . Show that the

components in frame B are (2 points)

T µ
′
1...µ

′
k
ν′1...ν

′
l

= Λµ′1
µ1 . . .Λ

µ′k µk(Λ
−1)ν1 ν′1 . . . (Λ

−1)νl ν′lT
µ1...µk

ν1...νl . (11)

We have stated above, that TpM plays the role of V . This means that V now depends on
the point in spacetime, thus it is natural to consider tensor fields,

T k,l : M −→ T k,l. (12)

A tensor field of (k, l) type assigns a (k, l)-tensor to each point in spacetime.
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