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H 5.1 The Lie bracket of vector fields (12 points)
A smooth vector field X on a manifold M fulfills the two conditions

Linearity: X(αf + βg) = αX(f) + βX(g) with α, β ∈ R, f, g ∈ C∞(M)

Leibniz rule: X(f · g) = f ·X(g) + g ·X(f) with f, g ∈ C∞(M) .
(1)

In general, maps with the properties (1) are called derivations. Given two vector fields X
and Y we define a new vector field [X, Y ], the Lie bracket or commutator of X and Y , by

[X, Y ](f) = X(Y (f))− Y (X(f)) for f ∈ C∞(M). (2)

a) Show in two ways that [X, Y ] is indeed a vector field:

i) Prove that [X, Y ] is a derivation. (3 points)

ii) Write [X, Y ] in terms of components and show that they transform as those of
a vector field unter change of coordinates. (2 points)

Note that neither XY nor Y X is a vector field.

b) Show that the Lie bracket is

i) skew-symmetric, [X, Y ] = −[Y,X], and (1 point)

ii) satisfies the Jacobi identity, [[X, Y ], Z]+[[Z,X], Y ]+[[Y, Z], X] = 0. (2 points)

c) Consider R2 equipped with some coordinates x1, x2. Calculate the Lie bracket of the
coordinate vector fields ∂1 = ∂

∂x1 and ∂2 = ∂
∂x2 . (1 point)

d) Find an example of two nowhere-vanishing, (at each point) linearly independent
vector fields in R2 whose Lie bracket does not vanish. Note that these two vector
fields provide a basis for the tangent space at each point. Due to your findings in
item c) they can, however, not be coordinate vector fields. (3 points)

Item c) shows that a set of vector fields can only be a set of coordinate vector fields if
their mutual Lie brackets vanish. In fact, the reverse is also true: Given n vector fields
X1, . . . , Xn defined on an open set U in an n-dimensional manifold M that are linearly
independent for all p ∈ U and whose mutual Lie brackets vanish, [Xk, Xl] = 0 for all
k, l = 1, . . . n, then there exists a local coordinate system x1, . . . , xn such that Xk = ∂k.
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H 5.2 Explicit calculations of Christoffel symbols (18 points)
Consider a manifold M with metric tensor g. The Christoffel symbols are defined by

Γλ µν =
1

2
gλσ (∂µgνσ + ∂νgσµ − ∂σgµν) , (3)

where gµν are the components of g in some coordinate system and gµλgλν = δµν .

a) On sheet 4 we considered the two-sphere S2 and the torus T 2 embedded in R3, as
well as de Sitter space embedded in R1,4. By pulling back the metric on the ambient
space with the respective inclusion maps, we obtained the induced metrics

ds2
S2 = R2

(
dθ2 + sin2 θ dφ2

)
,

ds2
T 2 = r2dθ2 +

(
R + r cos θ

)2

dφ2 ,

ds2
dS4 = −dt2 + α2cosh2(t/α)

[
dχ2 + sin2 χ

(
dθ2 + sin2 θ dφ2

)] (4)

Calculate the Christoffel symbols for these metrics with eq. (3). (2+2+4 points)

b) Consider a diagonal metric, i.e., gµν = 0 for µ 6= ν. Show that in this case the
Christoffel symbols are given by

Γλ µν = 0 ,

Γλ µµ = −1

2
(gλλ)

−1∂λgµµ ,

Γλ µλ = ∂µ

(
ln
√
|gλλ|

)
,

Γλ λλ = ∂λ

(
ln
√
|gλλ|

)
.

(5)

Here, λ 6= ν 6= µ 6= λ and repeated indices are not summed over. (4 points)

There is yet another way of calculating Christoffel symbols. To this end, consider curves
in a manifold M ,

x : (a, b) ⊂R −→ M

σ 7−→ x(σ) ,
(6)

and define a functional F by

F [x] =
1

2

b∫
a

gµν(x(σ))

(
dxµ(σ)

dσ

)(
dxν(σ)

dσ

)
dσ . (7)

c) Show that the Euler-Lagrange equation for F leads to the so called geodesic equation

d2xµ(σ)

dσ2
+ Γµ νλ

(
dxν(σ)

dσ

)(
dxλ(σ)

dσ

)
= 0 . (8)

From the geodesic equation one can unambiguously read of the Christoffel symbols.
(2 points)

d) Explicitly find F for de Sitter space — with metric ds2
dS4 as in eq. (4) — and calculate

the Euler-Lagrange equation. From this identify the Christoffel symbols. (4 points)
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