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H 9.1 Electromagnetism in curved space-time (30 points)
In problem H 2.2 we have considered classical electrodynamics in Minkowski space. Here,
we generalize this discussion to curved space-time. The action now reads

SM =−
N∑
i=1

∫
dσi

(
mi

√
−gαβ(xi(σi))ẋi

α(σi)ẋi
β(σi)− qiAα(xi(σi))ẋi

α(σi)

)
− 1

4

∫
d4x

√
−g(x)Fαβ(x)Fαβ(x) ,

(1)

in terms of particles of mass mi and charge qi, described by their trajectories xi with
components xµi , and the electromagnetic potential with components Aµ. Note that indices
are now raised and lowered with gµν and gµν . As usual, the field strength tensor is defined
by Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ.

a) Starting from the action of electromagnetism in Minkowski space, argue why the
action is generalized to (1). (2 points)

In the first part of this exercise we want to study how the equations of motions for particles
and the electromagnetic field look in curved space-time.

b) Take the variation of SM with respect to xµi . Show that upon parameterizing in terms
of the proper time τi, the equation of motion reads (4 points)

mi

(
ẍi
µ(τi) + Γµλρẋi

λ(τi)ẋi
ρ(τi)

)
= qi F

µ
ν(xi(τi))ẋi

ν(τi) . (2)

c) Rewrite the term that couples the particles and the electromagnetic field by intro-
ducing the charge-current density (2 points)

jµ(x) =
N∑
i=1

qi

∫
dσi δ

(4)(x− xi(σi))
ẋi
µ(σi)√
−g(x)

. (3)

d) Take the variation of S with respect to Aµ to derive the inhomogenous Maxwell’s
equations (3 points)

1√
−g(x)

∂

∂xµ

(√
−g(x)F νµ(x)

)
= jν(x) . (4)
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e) What about the homogeneous Maxwell’s equations? (2 points)

Let us now turn to charge conservation, which reads ∂µj
µ = 0 in Minkowski space. Its

covariant generalization needs to be valid in every coordinate frame, thus we expect that the
partial derivative is replaced by the covariant derivative so as to promote it to a tensorial
equation.

f) Use the inhomogenous Maxwell’s equations (4) to deduce the covariant charge con-
servation law, (3 points)

∇µj
µ(x) = 0 . (5)

g) In fact, the conservation law (5) can be shown to hold identically, i.e. it can be
proven without using the equations of motion. Since the definition of jµ in eq. (3)
involves the Delta-distribution, the equation has to be checked in the distributional
sense. This means you have to show∫

d4x
√
−g(x) (∇µj

µ(x))φ(x) = 0 , (6)

where φ is an arbitrary smooth function with compact support. Consequently, partial
integrations can be performed and all surface terms vanish. (4 points)

Now we promote the metric to a dynamical field by adding the Einstein-Hilbert term
introduced in H 7.3 to the action (1). The full action then reads

Sfull = SEH + SM . (7)

Further, we define the energy momentum tensor by

δSM =
1

2

∫
d4x
√
−g(x)T µν(x)δgµν(x) , (8)

which leads to Einstein’s field equations,

Gµν = 8πGNT
µν , (9)

upon varying the full action with respect to the metric. For simplification we work in
parameterization by the proper time from heron.

h) For SM as in eq. (1) show that the energy momentum tensor reads (4 points)

T µν(x) =
N∑
i=1

mi

∫
dτi

ẋi
µ(τi)ẋi

ν(τi)√
−g(x)

δ(4)(x− xi(σi))

− 1

4
Fαβ(x)Fαβ(x)gµν(x)− F µ

λ(x)F νλ(x) .

(10)

i) Show that the energy momentum tensor (10) is identically symmetric. (1 point)

j) For vanishing electromagnetic fields, Fµν = 0, prove the covariant version of energy
momentum conservation,

∇µT
µν(x) = 0 , (11)

without using eq. (9). Again, this is to be understood in the distributional sense. In
doing so you will need the equation of motion for the particles (2), the conservation
does thus not hold identically. This is not surprising, since the conservation also
follows from Noether’s theorem in which the equations of motion are used. (5 points)
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