Group Theory

Dr. Hans Jockers

http://www.th.physik.uni-bonn.de/klemm/grouptheory/index.php
Due date: discussed in the tutorial

1.1 Groups Theory in Physics

Discuss applications of group theory in physics that come to your mind.

1.2 Group Axioms

In class we defined a group G as follows.
Definition: A group G is a set with a binary operation $\cdot: G \times G \rightarrow G,(a, b) \mapsto a \cdot b$ such that:

- $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for any $a, b, c \in G$ (associativity),
- there exists an element $e \in G$ with $e \cdot a=a \cdot e=a$ for any $a \in G$ (identity),
- and for all $a \in G$ there exists a^{\prime} with $a \cdot a^{\prime}=a^{\prime} \cdot a=e$ (inverse).
a) We can weaken the definition of a group to the 'right sided axioms', i.e.,

A group G is a set with a binary operation $\cdot: G \times G \rightarrow G,(a, b) \mapsto a \cdot b$ such that

- $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for any $a, b, c \in G$ (associativity),
- there exists an element $e \in G$ with $a \cdot e=a$ for any $a \in G$ (right identity),
- and for all $a \in G$ there exists a^{\prime} with $a \cdot a^{\prime}=e$ (right inverse).

Show that this latter definition of a group is equivalent to the former definition of the group given in class.
Hint: First show that $a \cdot a=a$ implies that $a=e$. Use this result to argue that a right inverse element is also a left inverse element. Finally, use the equality between the left and right inverse element to show that the left identity element is also a right identity element.
b) Let us examine the binary operation $\cdot: G \times G \rightarrow G,(a, b) \mapsto a \cdot b$ with 'mixed sided axioms', i.e.,

- $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ for any $a, b, c \in G$ (associativity),
- there exists an element $e \in G$ with $a \cdot e=a$ for any $a \in G$ (right identity),
- and for all $a \in G$ there exists a^{\prime} with $a^{\prime} \cdot a=e$ (left inverse).

Show that these axioms are not equivalent to the axioms defining a group by giving a counterexample.

1.3 Properties of the Inverse Elements

a) Show that for any two group elements a, b of a group G the inverse elements a^{-1} and b^{-1} obey the relation

$$
(a \cdot b)^{-1}=b^{-1} \cdot a^{-1} .
$$

b) Show that if all group elements a of a group G fulfill $a^{2}=e$ then the group G is Abelian.
c) Show that if G is a finite group of even order that there is an element $a \neq e$ with $a^{2}=e$.

1.4 Direct Product of Groups

Given two groups G_{1} and G_{2}. Show that the (set theoretic) Cartesian product $G_{1} \times G_{2}$ - i.e., the set of ordered pairs (g_{1}, g_{2}) with $g_{1} \in G_{1}$ and $g_{2} \in G_{2}$ - together with the binary operation

$$
\left(g_{1}, g_{2}\right) \cdot\left(g_{1}^{\prime}, g_{2}^{\prime}\right):=\left(g_{1} g_{1}^{\prime}, g_{2} g_{2}^{\prime}\right)
$$

for any elements $g_{1}, g_{1}^{\prime} \in G_{1}$ and $g_{2}, g_{2}^{\prime} \in G_{2}$ forms a group $G_{1} \times G_{2}$, which is called the direct product group of G_{1} and G_{2}.

