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10.1 Lie Groups and Lie Algebras

In this exercise we want to study the relationship among Lie algebras of different Lie groups.
In particular, we want to analyze Lie algebra isomorphisms and their lifts to the Lie groups.

i) Determine the vector spaces underlying the Lie algebras of SO(n,R),U(n) and SU(n).
Confirm explicitly that the Lie brackets close on the elements of the respective Lie algebras.
Deduce the dimensions of so(n,R), u(n) and su(n).

ii) Determine the Lie algebra of the complex group Sp(2n,C) and compute its complex dimen-
sion. Remember Sp(2n,C) is defined as the automorphism group of the non-degenerate
skew-symmetric pairing

〈·, ·〉 : C2n × C2n −→ C , (x, y) 7−→ 〈x, y〉 := xtΩy , with Ω =

(
0 1n×n

−1n×n 0

)
.

iii) We define the compact symplectic group Sp(n) := Sp(2n,C)∩U(2n) which is a real group.
Determine with the help of i) and ii) the Lie algebra of Sp(n) and its dimension.

iv) Spell out the Lie algebras of SO(3,R), SU(2) and Sp(1) explicitly and show that they are
isomorphic.

We now want to study the relations among the Lie groups SO(3,R),SU(2) and Sp(1).

v) Show that the Lie groups SU(2) and Sp(1) are the same.
Hint : First, show that the most general element of U(2) can be written as(

αeiϕ β
−β̄eiϕ ᾱ

)
with |α|2 + |β|2 = 1 and ϕ ∈ R .

Then intersect these matrices with Sp(2,C) to construct a general element of Sp(1).

vi) Consider a general group element

(
α β
−β̄ ᾱ

)
of SU(2) to argue that as a manifold SU(2)

is the 3-sphere S3 (embedded in R4).
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vii) We consider the underlying vector space of the Lie algebra su(2) ' R3 and define the
scalar product

〈·, ·〉 : su(2)× su(2) −→ R , (x, y) 7−→ 〈x, y〉 :=
1

2
tr(xy†) .

Show that this scalar product is the canonical scalar product of R3 upon identifying the
basis vectors (ek)k=1,2,3 with (iσk)k=1,2,3 in terms of the Pauli matrices σk.

viii) Show that for any U ∈ SU(2) the map

ϕU : su(2) −→ su(2) , x 7−→ ϕU (x) := UxU−1

is well defined and preserves the scalar product. This implies that we have a map

Φ : SU(2) −→ Aut〈·,·〉(su(2)) ' O(3,R) , U 7−→ ϕU .

ix) Show that the image Φ(U) ∈ O(3,R) for a general

(
α β
−β̄ ᾱ

)
∈ SU(2) is given by

Φ(U) =

 Re(α2 − β2) Im(α2 + β2) −2Re(αβ)
−Im(α2 − β2) Re(α2 + β2) 2Im(αβ)

2Re(αβ̄) 2Im(αβ̄) |α|2 − |β|2

 .

The image of Φ is actually in SO(3,R) because det(Φ(U)) = 1 (which you do not need to
verify).

Hint : Consider the images of the basis elements iσk ∈ SU(2) with respect to the map ϕU

defined in viii).

x) We now want to show further that Φ. SU(2) −→ SO(3,R) is surjective. Recall that any
matrix M ∈ SO(3,R) can be obtained from the composition of rotations around the 3 coor-

dinate axes generated by
 cos θ1 − sin θ1 0

sin θ1 cos θ1 0
0 0 1

 ,

 cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2

 and
 1 0 0

0 cos θ3 − sin θ3
0 sin θ3 cos θ3

.

Show that these generators are in the image of Φ, which implies that Φ is surjective
(because it is a Lie group homomorphism).

xi) Show that the kernel of Φ is the subgroup Z2 of SU(2) (which is also the center of SU(2)).

(20 pts)

Summary of the results

1. SO(3,R), SU(2) and Sp(1) are real Lie groups of dimension 3. They have isomorphic Lie
algebras, i.e. so(3,R) ' su(2) ' sp(1).

2. SU(2) and Sp(1) are isomorphic Lie groups.

3. SO(3,R) and SU(2) are not isomorphic Lie groups. Instead they fit into the exact sequence

0 −→ Z2 −→ SU(2) −→ SO(3,R) −→ 0

which makes SU(2) a central extension of SO(3,R) by Z2.
This implies that as a manifold SO(3,R) is S3/Z2, where antipodal points of S3 are
identified. Topologically, SO(3,R) is not simply-connected, and SU(2) ' S3 is called a
double cover of SO(3,R) ' S3/Z2.
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