Group Theory

Dr. Hans Jockers

http://www.th.physik.uni-bonn.de/klemm/grouptheory/index.php
Due date: 01/09/2019

12.1 Direct Sum, Tensor Product and Dual Representation

Let G be a Lie group with two representations

$$
\rho_{V}: G \longrightarrow \mathrm{GL}(V, \mathbb{C}) \quad \text { and } \quad \rho_{W}: G \longrightarrow \mathrm{GL}(W, \mathbb{C}) .
$$

i) Consider the direct sum representation $\rho_{V \oplus W}: G \longrightarrow \mathrm{GL}(V, \mathbb{C})$. Show that the Lie algebra homomorphism $\left(\mathrm{d} \rho_{V \oplus W}\right)_{e}: \mathfrak{g} \longrightarrow \mathfrak{g l}(V \oplus W, \mathbb{C})$ is given by

$$
\left(\mathrm{d} \rho_{V \oplus W}\right)_{e}=\left(\mathrm{d} \rho_{V}\right)_{e} \oplus\left(\mathrm{~d} \rho_{W}\right)_{e} .
$$

ii) Consider the tensor product $\rho_{V \otimes W}=\rho_{V} \otimes \rho_{W}: G \longrightarrow \mathrm{GL}(V \otimes W, \mathbb{C})$. Show that

$$
\left(\mathrm{d} \rho_{V \otimes W}\right)_{e}=\left(\left(\mathrm{d} \rho_{V}\right)_{e} \otimes \mathbb{1}_{W}\right) \oplus\left(\mathbb{1}_{V} \otimes\left(\mathrm{~d} \rho_{W}\right)_{e}\right) .
$$

iii) Consider the dual representation $\rho_{V^{*}}$ and show that

$$
\left(\mathrm{d} \rho_{V^{*}}\right)_{e}=-\left(\mathrm{d} \rho_{V}\right)^{*}: \mathfrak{g} \longrightarrow \mathfrak{g l}\left(V^{*}, \mathbb{C}\right) .
$$

Hint: Represent ρ_{V} in matrix form, namely $\rho_{V}: G \longrightarrow \mathrm{GL}(n, \mathbb{C}), \quad g \longmapsto R_{V}(g)$ with $n=\operatorname{dim} V$. Recall $\rho_{V^{*}}: G \longrightarrow \operatorname{GL}(n, \mathbb{C}), g \longmapsto R_{V^{*}}(g)=R_{V}\left(g^{-1}\right)^{T}$.

12.2 The Exponential Map

We want to evaluate the exponential map for some elements of the Lie algebra $\mathfrak{s u}(2)$ and $\mathfrak{s o}(3, \mathbb{R})$ for the matrix Lie groups $\mathrm{SU}(2)$ and $\mathrm{SO}(3, \mathbb{R})$.
i) Evaluate the exponential map:

$$
\exp : \mathfrak{s u}(2) \rightarrow \mathrm{SU}(2) \subset \mathbb{C}^{2 \times 2}
$$

for the Lie algebra element $\left(\begin{array}{cc}0 & i \theta \\ i \theta & 0\end{array}\right)=\theta \cdot i \sigma_{1}$, where $\theta \in \mathbb{R}$.
ii) Evaluate the exponential map:

$$
\exp : \mathfrak{s o}(3, \mathbb{R}) \rightarrow \mathrm{SO}(3, \mathbb{R}) \subset \mathbb{R}^{3 \times 3}
$$

for the Lie algebra element $\left(\begin{array}{ccc}0 & 2 \theta & 0 \\ -2 \theta & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=\theta \cdot \tilde{\tau}_{1}$, where $\theta \in \mathbb{R}$.
iii) The Lie algebra isomorphism of ex.11.1 maps $\left(\begin{array}{cc}0 & i \theta \\ i \theta & 0\end{array}\right)$ to $\left(\begin{array}{ccc}0 & 2 \theta & 0 \\ -2 \theta & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Compare the results of (i) and (ii) in the light of the outcome of ex.11.1.

12.3 Derived Series and Semi-Simple Lie Algebras

Consider a Lie algebra \mathfrak{g} with an ideal \mathfrak{h}. The derived series $\mathcal{D}^{k} \mathfrak{h}$ is recursively defined by:

$$
\mathcal{D h}=[\mathfrak{h}, \mathfrak{h}], \quad \mathcal{D}^{k} \mathfrak{h}=\left[\mathcal{D}^{k-1} \mathfrak{h}, \mathcal{D}^{k-1} \mathfrak{h}\right],
$$

where $[\mathfrak{a}, \mathfrak{b}]$ denotes the subalgebra of \mathfrak{g}, which is spanned by $[a, b]$ for any $a \in \mathfrak{a}$ and any $b \in \mathfrak{b}$. Show that $\mathcal{D}^{k} \mathfrak{h}$ is an ideal in \mathfrak{g} for any $k \geq 1$.

Remark: The ideal \mathfrak{h} is called solvable if $\mathcal{D}^{k} \mathfrak{h}=0$ for some k. An alternative (but equivalent) definition of a semi-simple Lie algebra \mathfrak{g} is given by saying that \mathfrak{g} has no solvable ideals.

12.4 A Double Cover

Let $A, B \in \mathbb{C}^{2 \times 2}$ be elements in the space of 2×2 matrices over the field \mathbb{C} equipped with the form:

$$
Q(A, B)=\frac{1}{2} \operatorname{tr}(A \operatorname{adj}(B))
$$

where $\operatorname{adj}(\mathrm{M})$ denotes the classical adjoint of a matrix M and takes for 2×2 matrices the form, $\operatorname{adj}\left(\begin{array}{cc}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)=\left(\begin{array}{cc}m_{22} & -m_{12} \\ -m_{21} & m_{11}\end{array}\right)$.
i) Show that the form $Q(\cdot, \cdot)$ is symmetric and non-degenerate.
ii) Argue that the space of maps:

$$
f_{g, h}: \mathbb{C}^{2 \times 2} \rightarrow \mathbb{C}^{2 \times 2}, A \mapsto g \cdot A \cdot h^{-1},
$$

for any $g, h \in \mathrm{SL}(2, \mathbb{C})$ can be interpreted as elements of $\mathrm{SO}(4, \mathbb{C})$.
Furthermore, argue that the map:

$$
\varphi: \mathrm{SL}(2, \mathbb{C}) \times \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{SO}(4, \mathbb{C}),(g, h) \mapsto f_{g, h},
$$

is a $2: 1$ Lie group homomorphism.
Remark: In exercise 11.1 we have seen that $\mathrm{SU}(2)$ is the double cover of $\mathrm{SO}(3, \mathbb{R})$. The constructed Lie group homomorphism φ shows similarly that $\mathrm{SL}(2, \mathbb{C}) \times \mathrm{SL}(2, \mathbb{C})$ is the double cover of $\mathrm{SO}(4, \mathbb{C})$.

