Group Theory

Dr. Hans Jockers

http://www.th.physik.uni-bonn.de/klemm/grouptheory/index.php

Due date: 01/16/2019

13.1 Representations of the Lie Algebras $\mathfrak{sl}(2,\mathbb{C}),\ \mathfrak{su}(2),\ \mathfrak{so}(3,\mathbb{R})$ and their Lie Groups

- i) Let $V^{(n)}$ be the finite dimensional irreducible representation of the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$, which decomposes into $V^{(n)} = \bigoplus_{l=0}^{n} V_{n-2l}$ in terms of the eigenspaces V_{n-2l} with respect to the Cartan generator H. Show that the representations $V^{(n)}$ and $\operatorname{Sym}^{n}V^{(1)}$ are isomorphic for all $n \geq 1$.
- ii) Show that the irreducible representations $V^{(n)}$ of $\mathfrak{sl}(2,\mathbb{C})$ restrict to irreducible representations $\tilde{V}^{(n)}$ of the real lie algebra $\mathfrak{su}(2)$ and hence of $\mathfrak{so}(3,\mathbb{R})$. <u>Hint:</u> $\mathfrak{sl}(2,\mathbb{C}) = \mathfrak{su}(2) \otimes \mathbb{C}$

<u>*Remark*</u>: Note that any irreducible finite dimensional Lie algebra representation of $\mathfrak{su}(2)$ is of the form $\tilde{V}^{(n)}$.

- iii) Argue that any representation $\tilde{V}^{(n)}$ of the Lie algebra $\mathfrak{su}(2)$ lifts to a representation of the Lie group SU(2).
- iv) Show that the Lie algebra representation $\tilde{V}^{(n)}$ of $\mathfrak{so}(3,\mathbb{R})$ lifts only to a Lie group representation of $\mathrm{SO}(3,\mathbb{R})$ if *n* is even. <u>Hint:</u> Recall the results of exercise 11.1 and consider the action of the center of the Lie group $\mathrm{SU}(2)$ on the Lie group representation obtained from $\tilde{V}^{(n)}$.

 $(10 \ pts)$

13.2 Tensor Products of Lie Algebra Representation $V^{(n)}$ of $\mathfrak{sl}(2,\mathbb{C})$

i) Decompose the tensor products

$$V^{(1)} \otimes V^{(1)}$$
 and $V^{(5)} \otimes V^{(2)}$

of Lie algebra representations into their irreducible summands. <u>*Hint*</u>: Recall the result of exercise 12.1.

ii) Show that in general we have for $n \ge m$ the decomposition

$$V^{(n)} \otimes V^{(m)} \simeq V^{(n+m)} \oplus V^{(n+m-2)} \oplus \ldots \oplus V^{(n-m)}$$

<u>Remark</u>: Accordingly to the previous exercise 13.1, the representation theory of $\mathfrak{sl}(2,\mathbb{C})$ carries over to $\mathfrak{su}(2)$. Therefore, this decomposition of these tensor products becomes relevent in the context of spin-spin coupling in atomic physics.

 $(10 \ pts)$