Group Theory

Dr. Hans Jockers

http://www.th.physik.uni-bonn.de/klemm/grouptheory/index.php
Due date: 10/17/2018

2.1 The Symmetric Group S_{n}

Let us consider the symmetric group S_{n}. The group elements of S_{n} are the permutations of n elements, which we describe in terms of bijective functions $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$. The composition of such bijective functions corresponds to the binary group operation of S_{n}.
Since the permutation σ is a function on a finit set, it can conveniently be described by listing the elements and their images in two rows

$$
\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\sigma(1) & \sigma(2) & \cdots & \sigma(n)
\end{array}\right)
$$

a) Demonstrate that the symmetric group S_{n} (for $n \geq 3$) is non-Abelian.

Group elements of the symmetric group S_{n} can also be presented in terms of the cycle notations. A cycle $\mathcal{C}=\left(x_{1}, \ldots, x_{k}\right)$ with $x_{i} \in\{1, \ldots, n\}$ and $x_{i} \neq x_{j}$ for all $i \neq j$ is the permutation $\sigma_{\mathcal{C}}$ with $\sigma_{\mathcal{C}}\left(x_{i}\right)=x_{i+1}$ (where we set $x_{k+1} \equiv x_{1}$) and $\sigma_{\mathcal{C}}(x)=x$ for any other $x \notin\left\{x_{1}, \ldots, x_{k}\right\}$. Since the order of S_{n} is finite, it is not so difficult to see that any permutation σ can be written as a finite composition of disjoint cycle permutations, i.e., $\sigma=\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{\ell}\right)=\mathcal{C}_{1} \circ \ldots \circ \mathcal{C}_{\ell}$. For instance we have

$$
\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 4 & 1 & 6 & 5 & 2
\end{array}\right)=((1,3),(2,4,6))
$$

b) Argue that the permutation element in the cycle notation does not depend on the order of the cycles.
c) Consider the permutation element $\alpha=(1,5) \circ(1,2,6) \circ(1,3,2) \circ(1,4,5)$ and $\beta=(3,6) \circ$ $(1,2,4) \circ(2,4,3) \circ(2,3) \circ(1,5)$ in S_{6}. Determine $\alpha, \beta, \alpha^{-1}, \beta^{-1}, \beta \alpha$, and $\alpha \beta$ in cycle notation.
(3 pts)
d) Given any permutation $\alpha \in S_{n}$, describe and prove a quick method for determining α^{-1} in cycle notation.

2.2 Abelian Groups

Show that the following conditions on a group are equivalent:
(i) G is Abelian,
(ii) $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$,
(iii) $(a b)^{-1}=a^{-1} b^{-1}$ for all $a, b \in G$,
(iv) $(a b)^{n}=a^{n} b^{n}$ for all $n \in \mathbb{Z}$ and all $a, b \in G$,
(v) $(a b)^{n}=a^{n} b^{n}$ for three consecutive integers n and all $a, b \in G$.

2.3 Left- and Right Multiplication

For a group G, let us define the maps $l_{a}: G \rightarrow G, x \mapsto a \cdot x$ and the maps $r_{a}: G \rightarrow G, x \mapsto x \cdot a$ for any $a \in G$. These maps are called left an right multiplication maps with a, respectively. Show that for any a these maps are bijective.
(2 pts)

