Group Theory

Dr. Hans Jockers

http://www.th.physik.uni-bonn.de/klemm/grouptheory/index.php

Due date: 10/24/2018

3.1 Abelian Groups and Automorphisms

Show that a group G is abelian if and only if the map

$$\begin{array}{c} G \longrightarrow G \\ g \longmapsto g^{-1} \end{array}$$

is a group automorphism.

<u>*Hint*</u>: Remember that an automorphism is a group homomorphism between G and itself which is also bijective.

(3 pts)

3.2 Subgroups of \mathbb{Z}

If n is a fixed integer, then we can define the set $n\mathbb{Z} = \{kn | k \in \mathbb{Z}\} \subset \mathbb{Z}$.

a) Show that $n\mathbb{Z}$ is an additive subgroup of \mathbb{Z} .

(2 pts)

b) Show that $n\mathbb{Z}$ is isomorphic to \mathbb{Z} .

 $(1 \ pt)$

3.3 Conjugacy Classes and Normal Subgroups

In this exercise we want to analyse the relation between conjugacy classes and normal subgroups. Therefore, we recall the definition of an equivalence relation.

<u>Definition</u>: A binary relation \sim on a set X is called an equivalence relation if it satisfies the following properties:

- i) $a \sim a$ Reflexivity
- ii) $a \sim b$ if and only if $b \sim a$ Symmetry
- iii) $a \sim b$ and $b \sim c$ then also $a \sim c$ Transitivity.

If G is a group we can define conjugation by an element $h \in G$ in the following way

$$\begin{array}{c} G \longrightarrow G \\ g \longmapsto hgh^{-1} \end{array}$$

-1 / 2 -

a) Show that conjugation defines an equivalence relation, i.e., $g \sim h$ if and only if there exists $x \in G$ such that $g = xhx^{-1}$.

 $(2 \ pts)$

A subgroup $H \subset G$ is called normal if it is self-conjugate which means that $gHg^{-1} = H$ for all $g \in G$.

b) If H is a normal subgroup of G then show that it can be written as a union of conjugacy classes of G.

(2 pts)

c) Prove that all subgroups of Abelian groups are normal.

(1 pt)

d) Let G be a finite group and H a subgroup of it such that it contains half the elements of G, i.e., |G|/|H| = 2. Show that H is a normal subgroup. <u>Hint:</u> Decompose the group G into cosets of H.

 $(3 \ pts)$

3.4 The Center of a Group

If G is a group, the we can define the center Z(G) by

$$Z(G) = \{h \in G | hg = gh \text{ for all } g \in G\}.$$

a) Show that the center Z(G) is an abelian subgroup of G

(2 pts)

b) Moreover, show that the center Z(G) is a normal subgroup of G

(1 pt)

c) Let S_n be the permutation group of n elements. Prove that for n > 2 the center of S_n is the identity subgroup.

(3 pts)