# Group Theory 

Dr. Hans Jockers

http://www.th.physik.uni-bonn.de/klemm/grouptheory/index.php
Due date: 11/07/2018

### 5.1 The Quaternion Group

In the following we want to analyze the so called quaternion group $Q_{8}$. We define the group $Q_{8}$ as the group under ordinary matrix multiplication generated by the complex matrices $A=$ $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$, with $i^{2}=-1$.
i) Show that $Q_{8}$ is a non-abelian group of order 8 .

Hint: It is useful to show that $A^{4}=B^{4}=\mathbb{1}_{2 \times 2}$ and $B A=A^{3} B$.
Now, we want to define the quaternions more abstractly. Consider the set $G=\{ \pm 1, \pm i, \pm j, \pm k\}$ with multiplication given by $i^{2}=j^{2}=k^{2}=-1, i j=k, j k=i, k i=j, j i=-k, k j=-i, i k=-j$ and the usual rules for multiplying by $\pm 1$.
ii) Show that $G$ is a group that is isomorphic to the quaternion group $Q_{8}$.

The order of an element $g \in G$ is defined as the smallest positive integer $n$ such that $g^{n}=e$. For finite groups the order of any element is finite.
iii) Prove that the dihedral group $D_{4}$ is not isomorphic to $Q_{8}$.

Hint: Consider elements of order 2.
iv) Prove that the following short exact sequence does not split

$$
1 \longrightarrow N \longrightarrow Q_{8} \longrightarrow Q_{8} / N \longrightarrow 1,
$$

where $N$ is the center of the quaternion group.

$$
(2+2+2+2 p t s)
$$

### 5.2 Transpositions

On the second exercise sheet we analyzed the symmetric group $S_{n}$ in terms of cycles. In this exercise we want to use transpositions.

- A transposition is defined as a 2-cycle, i.e. $\tau=\left(x_{1}, x_{2}\right)$ meaning that the two elements $x_{1}$ and $x_{2}$ of $\{1,2, \ldots, n\}$ exchange positions.
- One can show that every permutation $\sigma \in S_{n}$ can be written as a product of (not necessarily disjoint) transpositions.
- Furthermore, a permutation $\sigma \in S_{n}$ is even (resp. odd) if $\sigma$ can be written as a product of an even (resp. odd) number of transpositions. In particular, it can be shown that a permutation cannot be both even and odd.
i) let $\alpha, \beta$ be even and $\gamma, \delta$ be odd permutations respectively. Show that

$$
\alpha \cdot \beta \text { is even, } \quad \gamma \cdot \delta \text { is even and } \alpha \cdot \gamma \text { is odd. }
$$

ii) For each $n \geq 2$, let $A_{n}$ be the set of all even permutations. Show that it is a normal subgroup of $S_{n}$.
iii) Determine the index of $A_{n}$ in $S_{n}$ and the order of $A_{n}$.
iv) Show that $N=\{(1),(12)(34),(13)(24),(14)(23)\}$ is a normal subgroup of $S_{4}$ contained in $A_{4}$ such that $S_{4} / N \cong S_{3}$ and $A_{4} / N \cong \mathbb{Z}_{3}$.

$$
(1+1+2+4 \text { pts })
$$

### 5.3 Classification of finite groups

In this exercise we want to classify all finite groups of order 4.
i) Show by using Lagrange's theorem that every finite group of order 4, which is not cyclic, must contain the identity element and three other elements of order 2.
ii) Prove that any non-cyclic finite group of order 4 is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Putting both parts together we have shown that up to isomorphisms all finite groups of order 4 are given by the cyclic group $\mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

