Group Theory

Dr. Hans Jockers

http://www.th.physik.uni-bonn.de/klemm/grouptheory/index.php

Due date: 11/07/2018

5.1 The Quaternion Group

In the following we want to analyze the so called quaternion group Q_8 . We define the group Q_8 as the group under ordinary matrix multiplication generated by the complex matrices $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, with $i^2 = -1$.

i) Show that Q_8 is a non-abelian group of order 8. <u>*Hint*</u>: It is useful to show that $A^4 = B^4 = \mathbb{1}_{2 \times 2}$ and $BA = A^3B$.

Now, we want to define the quaternions more abstractly. Consider the set $G = \{\pm 1, \pm i, \pm j, \pm k\}$ with multiplication given by $i^2 = j^2 = k^2 = -1$, ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j and the usual rules for multiplying by ± 1 .

ii) Show that G is a group that is isomorphic to the quaternion group Q_8 .

The order of an element $g \in G$ is defined as the smallest positive integer n such that $g^n = e$. For finite groups the order of any element is finite.

- iii) Prove that the dihedral group D_4 is not isomorphic to Q_8 . <u>*Hint*</u>: Consider elements of order 2.
- iv) Prove that the following short exact sequence does not split

$$1 \longrightarrow N \longrightarrow Q_8 \longrightarrow Q_8/N \longrightarrow 1$$
,

where N is the center of the quaternion group.

 $(2+2+2+2 \ pts)$

5.2 Transpositions

On the second exercise sheet we analyzed the symmetric group S_n in terms of cycles. In this exercise we want to use transpositions.

• A transposition is defined as a 2-cycle, i.e. $\tau = (x_1, x_2)$ meaning that the two elements x_1 and x_2 of $\{1, 2, ..., n\}$ exchange positions.

-1 / 2 -

- One can show that every permutation $\sigma \in S_n$ can be written as a product of (not necessarily disjoint) transpositions.
- Furthermore, a permutation $\sigma \in S_n$ is even (resp. odd) if σ can be written as a product of an even (resp. odd) number of transpositions. In particular, it can be shown that a permutation cannot be both even and odd.
- i) let α, β be even and γ, δ be odd permutations respectively. Show that

 $\alpha \cdot \beta$ is even, $\gamma \cdot \delta$ is even and $\alpha \cdot \gamma$ is odd.

- ii) For each $n \ge 2$, let A_n be the set of all even permutations. Show that it is a normal subgroup of S_n .
- iii) Determine the index of A_n in S_n and the order of A_n .
- iv) Show that $N = \{(1), (12)(34), (13)(24), (14)(23)\}$ is a normal subgroup of S_4 contained in A_4 such that $S_4/N \cong S_3$ and $A_4/N \cong \mathbb{Z}_3$.

(1+1+2+4 pts)

5.3 Classification of finite groups

In this exercise we want to classify all finite groups of order 4.

- i) Show by using Lagrange's theorem that every finite group of order 4, which is not cyclic, must contain the identity element and three other elements of order 2.
- ii) Prove that any non-cyclic finite group of order 4 is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Putting both parts together we have shown that up to isomorphisms all finite groups of order 4 are given by the cyclic group \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$.

(2+2 pts)