Group Theory

Dr. Hans Jockers

http://www.th.physik.uni-bonn.de/klemm/grouptheory/index.php
Due date: $11 / 14 / 2018$

6.1 Direct Sums and Tensor Products

Consider two matrices, $A \in \mathbb{C}^{p \times q}, B \in \mathbb{C}^{r \times s}$. For matrices, the direct sum is defined as

$$
A \oplus B \in \mathbb{C}^{(p+r) \times(q+s)} \quad \text { with } \quad(A \oplus B)_{i j}= \begin{cases}A_{i j}, & i \leq p \text { and } j \leq q \\ B_{(i-p)(j-q)}, & i>p \text { and } j>q \\ 0, & \text { else }\end{cases}
$$

and the tensor product is defined as

$$
A \otimes B \in \mathbb{C}^{p r \times q s} \quad \text { with } \quad(A \otimes B)_{(i k)(j l)}=A_{i j} B_{k l}
$$

In block matrix form they can be visualized as:

$$
A \oplus B=\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right), \quad A \otimes B=\left(\begin{array}{ccc}
A_{11} B & \ldots & A_{1 q} B \\
\vdots & \ddots & \vdots \\
A_{p 1} B & \ldots & A_{p q} B
\end{array}\right)
$$

i) Show that:

$$
\begin{array}{ll}
(A \oplus B)^{T}=A^{T} \oplus B^{T}, & \overline{A \oplus B}=\bar{A} \oplus \bar{B}, \\
(A \otimes B)^{T}=A^{T} \otimes B^{T}, & \overline{A \otimes B}=\bar{A} \otimes \bar{B},
\end{array}
$$

where ${ }^{-}$means complex conjugation, i.e. $(\bar{A})_{i j}=\bar{A}_{i j}$.
ii) Show that, if dimensions match, the following is true:

$$
(A \oplus B)(C \oplus D)=A C \oplus B D, \quad(A \otimes B)(C \otimes D)=A C \otimes B D
$$

iii) Let $A \in \mathbb{C}^{m \times m}, B \in \mathbb{C}^{n \times n}$. Prove that:

$$
\begin{aligned}
& \operatorname{tr}(A \oplus B)=\operatorname{tr} A+\operatorname{tr} B, \quad \operatorname{det}(A \oplus B)=\operatorname{det} A \cdot \operatorname{det} B, \\
& \operatorname{tr}(A \otimes B)=\operatorname{tr} A \cdot \operatorname{tr} B .
\end{aligned}
$$

iv) Let again $A \in \mathbb{C}^{m \times m}, B \in \mathbb{C}^{n \times n}$. Prove that:

$$
\operatorname{det}(A \otimes B)=(\operatorname{det} A)^{n} \cdot(\operatorname{det} B)^{m}
$$

v) Given two vector spaces V, W, each vector in $V \otimes W$ can be represented by a $\operatorname{dim} V \times \operatorname{dim} W$ matrix. Show that the vectors of the form $v \otimes w \in V \otimes W$ correspond to rank one matrices.

6.2 Characters of the Exterior Product and the Symmetric Product

Let V be a finite complex vector space of dimension n with a basis given by $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Then the tensor product $V \otimes V$ has a basis $\left\{\left(e_{i} \otimes e_{j}\right)_{i, j=1,2, \ldots, n}\right\}$.
Let $e_{i} \wedge e_{j}:=\frac{1}{2}\left[\left(e_{i} \otimes e_{j}\right)-\left(e_{j} \otimes e_{i}\right)\right]$ and $e_{i} \vee e_{j}:=\frac{1}{2}\left[\left(e_{i} \otimes e_{j}\right)+\left(e_{j} \otimes e_{i}\right)\right]$ such that we can define

$$
\bigwedge^{2} V:=\left\langle e_{i} \wedge e_{j}\right\rangle_{1 \leq i<j \leq n}, \quad \text { and } \quad \operatorname{Sym}^{2} V:=\left\langle e_{i} \vee e_{j}\right\rangle_{1 \leq i \leq j \leq n} .
$$

i) Let V be a representation of the group G. Show that $\bigwedge^{2} V$ and $\mathrm{Sym}^{2} V$ are subrepresentations of $V \otimes V$ such that $\bigwedge^{2} V \oplus \mathrm{Sym}^{2} V=V \otimes V$.
ii) Show that the characters of $\bigwedge^{2} V$ and $\mathrm{Sym}^{2} V$ are respectively given by

$$
\chi_{\wedge^{2} V}(g)=\frac{1}{2}\left(\chi_{V}(g)^{2}-\chi_{V}\left(g^{2}\right)\right), \quad \chi_{\operatorname{Sym}^{2} V}(g)=\frac{1}{2}\left(\chi_{V}(g)^{2}+\chi_{V}\left(g^{2}\right)\right) .
$$

Hint: Consider the eigenvalues of the group action for a fixed element $g \in G$ on V and determine the eigenvalues of the group action of G on $\Lambda^{2} V$ of $\operatorname{Sym}^{2} V$.

6.3 Characters and the Characteristic Polynomial

Let ρ_{V} be a finite complex representation of G, i.e. $\rho_{V}: G \longrightarrow \mathrm{GL}(V, \mathbb{C})$. We want to show that the characteristic polynomial P of the map $g:=\rho_{V}(g): V \longrightarrow V$ for a fixed $g \in G$ is determined by the character $\chi_{V}: G \longrightarrow \mathbb{C}$. Work out explicitly for 2 and 3 dimensional representations the formulas for the characteristic polynomials in terms of their respective characters.
Remark: It can be shown using the theory of symmetric polynomials that the above relations can be extended for general n dimensional representations.

6.4 Conjugacy Classes of S_{n}

In this exercise we want to show that there is a one-to-one correspondence between the conjugacy classes of S_{n} (see exercise 3.3) and partitions of n. Recall that a partition of n is a way of writing n as a sum of positive integers. Two partitions are equal if they only differ in the order of their summands. E.g. $1+1+1,2+1,3$ are all partitions of 3 .
Remember that any element of S_{n} can be written in terms of disjoint cycles (see exercise 2.1).
i) Show that for any $\pi \in S_{n}$ and any cycle $\mathcal{C}=\left(x_{1}, \ldots, x_{s}\right)$, with $x_{i} \in\{1, \ldots, n\}$ and $x_{i} \neq x_{j}$ for all $i \neq j$

$$
\pi \mathcal{C} \pi^{-1}=\left(\pi\left(x_{1}\right), \ldots, \pi\left(x_{s}\right)\right)=: \pi(\mathcal{C}) .
$$

ii) Show that

$$
\pi\left(\mathcal{C}_{1} \circ \mathcal{C}_{2} \circ \ldots \circ \mathcal{C}_{r}\right) \pi^{-1}=\left(\pi\left(\mathcal{C}_{1}\right) \circ \pi\left(\mathcal{C}_{2}\right) \circ \ldots \circ \pi\left(\mathcal{C}_{r}\right)\right) .
$$

iii) Argue that there is a one-to-one correspondence between partitions of n and conjugacy classes of S_{n}.
iv) Work out all conjugacy classes of S_{5}.

