Group Theory

Dr. Hans Jockers http://www.th.physik.uni-bonn.de/klemm/grouptheory/index.php Due date: 11/28/2018

8.1 Irreducible Representations of Q₈

We want to work out all irreducible representations of the Quaternion group Q_8 defined in exercise 5.1.

- i) Determine the number of conjugacy classes of Q_8 and the number of elements they contain.
- ii) Check that \mathbb{Z}_2 is a normal subgroup of Q_8 . Prove that Q_8/\mathbb{Z}_2 is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.
- iii) Determine the irreducible representations of $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. Lift these representations to irreducible representations of Q_8 .
- iv) Show that apart from the irreducible representations lifted from $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ there is one more irreducible representation of Q_8 . Determine its dimension and character.
- v) Classify these representations into real, quaternionic and complex \mathbb{C} -representations.

 $(8 \ pts)$

8.2 Real C-Representations of a Group

In this exercise we want to look at properties of real C-representations.

- i) Show that all characters of a finite group are real if and only if every element is conjugate to its inverse.
- ii) Argue that all characters of the permutation group S_n are real. <u>*Hint*</u>: Recall the results of exercise 6.4.
- iii) Show explicitly for S_4 that all representations are real \mathbb{C} -representations. <u>Remark</u>: All irreducible \mathbb{C} -representations of S_n are real.
- iv) Decide which irreducible representations of A_4 are real, quaternionic and complex \mathbb{C} representations.

The character tables of S_4 and A_4 are listed at the end of the sheet. For an explicit calculation of the character tables refer to exercise sheet 7.

 $(8 \ pts)$

8.3 Complex \mathbb{C} -Representations of a Group

In this exercise we want to show that if G is a group of odd order, then any non-trivial irreducible \mathbb{C} -representation is complex. Thus let G be a group of odd order, then:

- i) Show that any $g \in G$ has odd order, i.e. $g^{2k+1} = e$ for some $k \in \mathbb{Z}$. Conclude that any element in G can be written as a square of another element.
- ii) Let V be an irreducible C-representation. Show that:

$$\sum_{g \in G} \chi_{\mathcal{V}}(g) = \sum_{g \in G} \chi_{\mathcal{V}}(g^2)$$

<u>*Hint*</u>: Use the conclusion of part i).

iii) Argue that if V is a non-trivial irreducible representation then it must be a complex \mathbb{C} -representation.

<u>*Hint*</u>: Use the orthonormality of irreducible characters.

(4 pts)

#elements	$ [(1)] \\ 1$	[(12)] 6	[(12)(34)] 3	[(123)] 8	[(1234)] 6
<u>1</u> <i>T</i>	- 1	1	1	1	1
1_A	1	-1	1	1	-1
3_{S}	3	1	-1	0	-1
ρ	3	-1	-1	0	1
$oldsymbol{ ho}'$	2	0	2	-1	0

Table 1: Character table of S_4 (see exercise 7.1)

	[(1)]	[(12)(34)]	[(123)]	[(132)]
#elements	1	3	4	4
1_{T}	1	1	1	1
1_1	1	1	ω	ω^2
1_2	1	1	ω^2	ω
ρ	3	-1	0	0

Table 2: Character table of A_4 (see exercise 7.2)