Group Theory

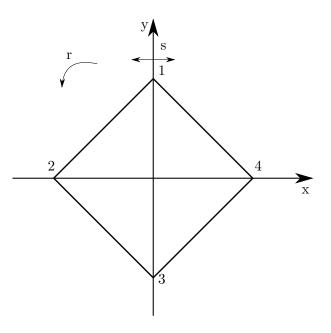
Dr. Hans Jockers

http://www.th.physik.uni-bonn.de/klemm/grouptheory/index.php

Due date: 12/07/2018 — due date on Friday (Dies Academicus)

9.1 Representations of the Dihedral Group D_4

In this exercise we want to look at the irreducible representations of the dihedral group D_4 . Recall that the group D_4 is the group of symmetries of a square:



 D_4 is generated by reflections s along the y-axis and rotations r by 90°. Algebraically, it can be described by the relations $r^4 = s^2 = e$, $rs = sr^3$, as discussed in the lecture.

- i) Determine the number of conjugacy classes of D_4 and the number of elements they contain.
- ii) Recall that D_4 is a subgroup of S_4 and determine the embedding: $\phi: D_4 \hookrightarrow S_4$. <u>*Hint*</u>: Map the generators of D_4 to cycles in S_4 and show that ϕ is a group homomorphism.
- iii) Show that the alternating representation $\mathbf{1}_A$ of S_4 restricts to a 1-dimensional representation $\tilde{\mathbf{1}}_A$ of D_4 , which is not the trivial representation $\mathbf{1}_T$.
- iv) Calculate the number and dimensions of the remaining irreducible representations.
- v) Construct a two-dimensional representation $\rho_2 : D_4 \to GL(2, \mathbb{C})$ by realising the generators of D_4 in terms of 2×2 matrices acting geometrically on \mathbb{R}^2 .

vi) Use the embedding $\phi: D_4 \hookrightarrow S_4$ to calculate the character of the representation $\mathbf{\tilde{3}}_S$ of D_4 obtained from the restriction of the standard representation $\mathbf{3}_S$ of S_4 . <u>Hint:</u> The character table of S_4 is given by:

	[(1)]	[(12)]	[(12)(34)]	[(123)]	[(1234)]
#elements	1	6	3	8	6
1_{T}	1	1	1	1	1
1_A	1	-1	1	1	-1
3_{S}	3	1	-1	0	-1
ρ	3	-1	-1	0	1
ρ'	2	0	2	-1	0

vii) Show that $\tilde{\mathbf{3}}_S$ decomposes as $\tilde{\mathbf{3}}_S = \mathbf{2} \oplus \mathbf{1}'$ and compute the character of $\mathbf{1}'$.

viii) Use suitable tensor products to deduce the still remaining representation(s).

ix) Argue that all irreducible representations of D_4 are real.

 $(12 \ pts)$

9.2 Representations of the Permutation Group S_5 with Young Tableaux

Use the classification of irreducible representations in terms of Young Tableaux. List all irreducible representations of S_5 and compute their dimensions with the hook length formula from the lecture.

$$(5 \ pts)$$

9.3 The Group Algebra $\mathbb{C}[G]$

Let G be a finite group with group algebra $\mathbb{C}[G]$ as defined in the lecture. Let \mathcal{F} be the space of functions, $\mathcal{F}: G \to G$, on which we define a product $*: \mathcal{F} \times \mathcal{F} \to \mathcal{F}$ given by:

$$(\alpha * \beta)(g) := \sum_{h} \alpha(h) \cdot \beta(h^{-1}g) \quad \text{for any } \alpha, \beta \in \mathcal{F}.$$
 (1)

We identify the space \mathcal{F} with the group algebra $\mathbb{C}[G]$ as:

$$\Phi: \mathcal{F} \longrightarrow \mathbb{C}[G] , \quad \alpha \longmapsto \sum_g \alpha(g) e_g .$$

Show that the diagram:

commutes, i.e. $\Phi(\alpha * \beta) = \Phi(\alpha) \cdot \Phi(\beta)$.

(3 pts)

-2/2 -