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–Homework–

1 Satellites in curved space (9 points)

A good approximation to the metric outside the surface of the Earth is provided by

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)dr2 + r2(dθ2 + sin2 θdφ2) , (1)

where

Φ = −GM
r

(2)

may be thought of as the familiar Newtonian gravitational potential. Here G is Newton’s
constant and M is the mass of the earth. For this problem Φ may be assumed to be small.

1. Imagine a clock on the surface of the Earth at distance R1 from the Earth’s center, and
another clock on a tall building at distance R2 from the Earth’s center. Calculate the
time elapsed on each clock as a function of the coordinate time t. Which clock moves
faster? 3 pts.

2. Solve for a geodesic corresponding to a circular orbit around the equator of the Earth
(θ = π/2). What is dφ/dt? 3 pts.

3. How much proper time elapses while a satellite at radius R1 (skimming along the surface
of the earth, neglecting air resistance) completes one orbit? You can work to first order
in Φ. Plug in the actual numbers for the radius of the Earth and so on (don’t forget to
restore the speed of light) to get an answer in seconds. How does this number compare
to the proper time elapsed on the clock stationary on the surface? 3 pts.

2 The Weyl tensor (8 pts.)

The Weyl tensor

Cρσµν = Rρσµν −
2

(n− 2)

(
gρ[µRν]σ − gσ[µRν]ρ

)
+

2

(n− 1)(n− 2)
Rgρ[µgν]σ (3)

captures the trace-free part of the Riemann tensor.
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1. Show that in the vacuum, i.e. for Tµνg
µν = 0, the trace of the Riemann tensor vanishes.

1 pts.

2. Show that the Weyl tensor Cµνρσ is left invariant by a conformal transformation

gµν(x)→ Ω(x)2gµν(x) , (4)

where Ω(x) is an arbitrary but non-vanishing function of spacetime. This can be inter-
preted as the absence of a characteristic scale under the absence of matter. 3 pts.

3. Show that for n ≥ 4 the Weyl tensor satisfies a version of the Bianchi identity,

∇ρCρσµν = 2
(n− 3)

(n− 2)

(
∇[µRν]σ +

1

2(n− 1)
gσ[µ∇ν]R

)
. (5)

4 pts.

3 The Einstein-Hilbert action (10 pts.)

In the lecture you saw that the Einstein equations can be derived from the variation of the
Einstein-Hilbert action

SH =

∫
dnx
√
−gR . (6)

In this exercise you will fill in some steps that were left out on the blackboard.

1. Using Leibniz rule the variation δSH can be written as

SH =

∫
dnx

[√
−ggµνδRµν +

√
−gRµνδgµν +Rδ

√
−g
]

= (δS)1 + (δS)2 + (δS)3 . (7)

Express the variation of the Riemann tensor in terms of the variation of the Christoffel
symbols. Note that in contrast to the Christoffel symbol itself the variation is actually a
tensor. Use the covariant derivative ∇λ(δΓρνµ) to derive

δRρµλν = ∇λ(δΓρνµ)−∇ν(δΓρλµ) . (8)

4 pts.

2. Use the above expression to show that (δS)1 is the integral over a total divergence. By
Stokes theorem this is equivalent to a contribution from the boundary which we assume
to vanish. 2 pts.

3. Use the identity Tr(lnM) = ln(detM) valid for arbitrary matrices M to derive

δ(g−1) =
1

g
gµνδg

µν . (9)

From this derive

δ
√
−g = −1

2

√
−ggµνδgµν . (10)

3 pts.

4. Combine these results to derive the Einstein equations. 1 pts.
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