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–Presence exercises–

1 Classical Electrodynamics and Field Theory

In this exercise session we want to recall some basics in field theory. We focus on the simplest
setup, which you should be familiar with from classical electrodynamics.

1.1 Warm-Ups

1. Recall the definition of the field strength tensor Fµν from electrodynamics in terms of the
electric and magnetic fields. How is it related to the potential Aµ?

2. Which gauge transformation acting on Aµ leaves the theory invariant?

3. Consider a theory which is described by a Lagrangian density L(φ, ∂µφ), depending on a
field φ and its derivative. Recall the expression for the equations of motion and furthermore
recall the statement of Noether’s theorem. How can you generalize the simplest field
theoretical version of Noether’s theorem to accomodate for

• Multiple fields φi?

• Symmetries depending on multiple parameters,
e.g. translations in d > 1 or rotations in d > 2?

To which symmetry is the energy-momentum tensor associated and what is its general
formula from Noether’s theorem?

1.2 Exercises

1. Consider the following action for electrodynamics without sources

S = −1
4

∫
d4xFµνF

µν , (1)

and derive Maxwell’s equations from that.

2. Calculate the energy-momentum tensor. Check wether it is symmetric!
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3. In order to obtain a symmetric energy-momentum tensor, we can add a term of the form
∂αK

αµν (recall why?). Demanding that ∂αKαµν is divergenceless, what does this imply
for its symmetries? Use

Kλµν = FµλAν , (2)

to introduce the completed energy-momentum tensor

T̂µν = Tµν + ∂αK
αµν , (3)

and derive the expressions for the electromagnetic energy and momentum densities.

4. How do you incorporate a source term? Hint: How does a source term occur in Maxwell’s
equations? What modification is needed in the Lagrangian? What would change in 1.-3.
in this case?

2 The Lorentz Group I

In this exercise we would like to recall some basic facts about the Lorentz group, which you
hopefully encountered earlier in your studies. We work with the convention, that the metric
gµν has the following form gµν = diag(1,−1,−1,−1) and four-vectors are usually denoted by
x = (x0, ~x). We sometimes write 〈x, y〉 = gµνx

µyν . Furthermore the canonical basis of R4 is
denoted by eµ with 1 in the µ-th component and 0 otherwise.

1. Remind yourself, what are space-, light- and time-like vectors!

2. What is the defining property of a Lorentz transformation?

3. How can one interpret spatial rotations as a Lorentz transformation?

4. Show explicitly, that the two transformations T = diag(−1, 1, 1, 1) and S = diag(1,−1,−1,−1)
are elements of the Lorentz group. What is the interpretation of their action?

5. Following the definition, show that |Λ0
0| ≥ 1 and det Λ = ±1. What is the meaning of

Λ0
0 < 0?

6. Show that the Lorentz transformations make up a group, called the Lorentz group L =
O(1, 3), which has four disconnected branches (as a manifold)

L↑+ : Λ0
0 ≥ +1, det Λ = +1, L↑− : Λ0

0 ≥ +1, det Λ = −1

L↓− : Λ0
0 ≤ −1, det Λ = −1, L↓+ : Λ0

0 ≤ −1, det Λ = +1.

Which component is connected to the identity? For the case that Λ0
0 ≥ 1, Λ is called

orthochronous. If det Λ = 1, then Λ is called proper. The proper Lorentz transformations
L+ := L↑+∪L

↓
+ are called SO(1, 3). How can one obtain the other branches of the Lorentz

group from the orthochronous, proper branch?

7. Consider the set of skew-symmetric matrices L̂, i.e. 〈x,Ay〉 = −〈Ax, y〉 w.r.t. the Min-
kowski metric. Define furthermore

ωµνx = eµ〈eν , x〉 − eν〈eµ, x〉, µ < ν. (4)

Show that L̂ is a six-dimensional vector space with basis ωµν and [A,B] = AB −BA ∈ L̂
for A,B ∈ L̂.
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8. Calculate [ωµν , ωκλ]!

9. In addition, show that for A ∈ L̂

Λ(τ) = exp(τA) ∈ L+, (5)

Hint: You might want to use that det exp(A) = exp(TrA).

This promotes the vector space L̂ to a Lie algebra of the Lie group L+ and ωµν are
called the generators of L+ (why only L+?). Note: The Lie algebra is the vector space of
infinitesimal transformations with the Lie bracket [·, ·] as an inner product.

–Homework–

3 The complex scalar field (10 pts.)

Let φ : R4 → C be a complex scalar field that obeys the Klein-Gordon equation. The action is
given by

S =
∫
d4x(∂µφ∗∂µφ−m2φ∗φ). (6)

This theory is best analyzed by considering φ(x) and φ∗(x) as the basic dynamic variables.

1. Find the conjugate momenta to φ(x) and φ∗(x) and write down the canonical commutation
relations. Show that the Hamiltonian is given by

H =
∫
d3x(π∗π +∇φ∗ · ∇φ+m2φ∗φ). (7)

Compute the Heisenberg equation of motion for φ(x) and show that it is indeed the
Klein-Gordon equation. 3 pts.

2. Expand the field operators into fourier modes and express H in terms of creation and
annihilation operators. Show that the theory contains two sets of particles of mass m. 2
pts.

3. Show that the theory is invariant under φ(x) 7→ eiαφ(x) and therefore exhibits a global
U(1) symmetry. Note: Global means that α does not depend on x. 1 pt.

4. Rewrite the conserved charge

Q =
∫
d3x

i

2
(φ∗π∗ − πφ), (8)

in terms of creation and annihilation operators and evaluate the charge of the particles of
each type. 2 pts.

5. Consider the case of two complex Klein-Gordon fields with the same mass. Label the fields
as φα(x), where a = 1, 2. Show that there are now four conserved charges, one given by
the generalization of the part above, and the other three given by

Qi =
∫
d3x

i

2
(φ∗a(σ

i)abπ∗b − πa(σi)abφb), (9)

where σi are the Pauli matrices. Show that these three charges have the commutation
relations of angular momentum (SU(2))! 2 pt.
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