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–Presence exercises–

In this exercise session we want to recall some basic notions from complex analysis and especially
on integration in the complex plane. This becomes important in the evaluation of propagators
which are a central object in QFT.

1 Some basics on integration in the complex plane

This exercise is a short recap of some facts about complex integration, that we need in the next
exercise.

1. Integrate the function f(z) = zn, n ∈ Z along the two closed paths in the complex plane
parametrised by

γ(t) = re±it, 0 ≤ t ≤ 2π (1)

for n = −1 and n 6= −1. Do the results depend on the parameter r? Do they depend on
the orientation of the path (i.e. the ± sign)?

2. Relate this result to the existence or non-existence of an antiderivative F (z), ∂zF (z) =
f(z) along the complete path(s).

3. The Laurent series is a generalisation of the Taylor series that includes poles/singularities,

f(z) =

∞∑
m=−∞

am(z − z0)m. (2)

The coefficient of the single poles is called the residue of f in z0,

a−1 = resz0f. (3)

In the following exercise (and quantum field theory in general) you will need the residue
theorem:

Residue theorem

Let γ be a closed path in U ⊂ C, S a discrete set, f(z) holomorphic in U \ S and γ meets
none of the points in S. Then

1

2πi

∫
γ

f(z)dz =
∑
a∈S

n(γ, a)resaf, (4)

where n(γ, a) is the winding number of the path γ with respect to a.
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As an example show that
∞∫
0

dx

x2 + 1
=
π

2
, (5)

by transforming the limits of integration to (−∞,∞) and closing the contour using an arc
γ′ := {x = Reit, 0 ≤ t ≤ π}.

2 Properties of the propagator ∆(x− y)

Expand the real scalar field φ(x) in annihilation and creation operators, calculate ∆(x − y) =
−i〈0|φ(x)φ(y)|0〉 and show that it has the following properties:

1. ∆(x− y) is a Lorentz-invariant function,

2. ∆(x− y) = −∆(y − x),

3. ∆(x− y) obeys the following boundary conditions:

∆(0, ~x− ~y) = 0,
∂

∂x0
∆(x0 − y0, ~x− ~y)

∣∣∣∣
x0=y0

= −δ(3)(~x− ~y). (6)

4. ∆(x− y) obeys the homogeneous Klein-Gordon equation

(� +m2)∆(x− y) = 0. (7)

5. ∆(x− y) vanishes for spacelike arguments:

(x− y)2 < 0→ ∆(x− y) = 0. (8)

–Homework–

3 Poincaré algebra (10 pts.)

Perhaps the main guiding principle of quantum field theory is that of symmetry. In particular all
the fields have to fall into representations of the symmetries that leave a given theory invariant.
Even if internal symmetries such as gauge or flavour symmetries are absent the particles arising
as excitations in a relativistic quantum field theory are classified by irreducible representations
of the Poincaré group. The Poincaré group as well as the group of rotations and many other
groups that one encounters in modern physics are examples of Lie groups. This means that
they are continuous and have the geometrical structure of a manifold of a certain dimension.
Elements connected to the identity can be obtained by exponentiating generators of infinitesimal
transformations. The vector space spanned by the latter is called Lie algebra and encodes many
properties of the group.

1. What must mµ
ν satisfy so that Λµν = δµν + iεmµ

ν + O(ε2) is an infinitesimal Lorentz
transformation? What is the constraint on tij for an ordinary infinitesimal rotation Rij =
δij + iεtij +O(ε2)? 1 pts.
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2. As generators for the Lorentz group in D dimensional space-time one can take the infini-
tesimal

”
rotations“ in the 1

2D(D − 1) coordinate planes [ρσ] given by

m[ρσ]
µ
ν

= i
(
δµρ ηνσ − δµσηρν

)
= −m[σρ]

µ
ν
. (9)

The transformation acts on functions according to

R̂f(x) = f(R̂−1x), (10)

and from the Taylor expansion

f

(
xµ − εi∂x

′µ

∂ai

∣∣∣∣
a=0

)
= f(x)− εi∂x

′µ

∂ai
∂

∂xµ
f(x) +O(ε2), (11)

where ai parametrises the transformation, you find that the generators of the representa-
tion on functions can be calculated using

Li = i
∂x′µ

∂ai
∂

∂xµ
. (12)

Note: the index i can in general stand for multiple and for example Lorentz indices.
Calculate the corresponding generators of the Lorentz group L[ρσ] ≡ Lρσ and show the
commutation relations

[Lµν , Lρσ] = i(ηνρLµσ − ηµρLνσ − ηνσLµρ + ηµσLνρ). (13)

2 pts.

3. The Poincaré group can be obtained by allowing translations xµ → xµ + aµ in addition
to the rotations and boosts of the Lorentz group. Calculate the differential operator re-
presentation of the generator of translations Pµ. Calculate the commutators [Pµ, Pν ] and
[Lµν , Pλ]. Does the algebra close? 2 pts.

4. The Pauli-Lubanski four-vector is defined in terms of Pµ and Lµν as W λ = 1
2ε
λσµνLµνPσ.

Prove the commutation relations

[W λ, Lµν ] = i(W νηµλ −Wµηνλ), [W λ, P σ] = 0, [W λ,W σ] = iελσµνWνPµ. (14)

Hint: for the first commutator use the identity

ηδνερσλµ + ηρνεσλµδ + ησνελµδρ + ηλνεµδρσ + ηµνεδρσλ = 0. (15)

3 pts.

5. Irreducible representations can be classified by the eigenvalues of the Casimir operators.
These are operators that commute with all other generators of the group. Show that PµPµ
and WµWµ are Casimir operators of the Poincaré group. 2 pts.

In fact PµPµ and WµWµ are the only Casimir operators of the Poincaré group and we can use
them to classify the representations. There are six cases to consider

(i) p2 = m2 > 0, p0 > 0,
(ii) p2 = m2 > 0, p0 < 0,

(iii) p2 = m2 = 0, p0 > 0,
(iv) p2 = m2 = 0, p0 < 0,
(v) pµ = 0,

(vi) p2 < 0.

(16)
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The first and third classes correspond to physical massive and massless particles, the fifth class is
the vacuum and the sixth should correspond to virtual particles. The other classes are probably
unphysical. (See Lewis H. Ryder, Quantum Field Theory, p.60f. Actually reading p. 55-64 is
highly recommended.) For the case of a physical massive particle the eigenvalues to WµWµ are
of the form WµWµ = −m2s(s + 1) and classify the spin of the particle. For massless particles
Wµ is proportional to Pµ and the proportionality constant λ classifies the helicity. For example
the helicity of a photon is λ = ±1.
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