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–Homework–

1 Lorentz algebra II (15 pts.)

For a quantum field theory to be Lorentz invariant it is sufficient that the Lagrangian density L
transforms as a scalar field, i.e. L(x)→ L′(x) = L(Λ−1x). With the density of the Klein-Gordon
field you have already seen one example where the field itself is scalar and corresponding particles
have spin s = 0. Note that a scalar field transforms in an infinite dimensional representation
of the Lorentz group with the generators represented by differential operators as was proven
on sheet 2.1 More general fields Φi can be obtained by allowing for internal degrees of freedom
which transform in a finite dimensional representation, i.e.

Φ(x)i → R(Λ)ijΦ
j(Λ−1x) (1)

and quantum excitations of these fields lead to particles of spin s = 1
2 , 1,

3
2 , 2. In this exercise

we want to classify the finite dimensional representations of the Lorentz algebra.2

1. Remember that the Lie algebra of the Lorentz group spanned by the generators Jµν

satisfies the commutation relations

[Jµν , Jρσ] = i(gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ). (2)

Note that the algebra is independent of the representation and for the internal degrees of
freedom we are interested in finite dimensional representations so right now it is better to
think about the generators as anti-symmetric matrices instead of differential operators.
Define the generators of rotations and boosts as

Li =
1

2
εijkJjk, Ki = J0i, (3)

where i, j, k = 1, 2, 3. A Lorentz transformation3 can then be written

Φ→ exp (−iΘ · L− iβ ·K) Φ. (4)

Show in the representation on 4-vectors, i.e. with the generators given as (9) on sheet 2,
that a transformation with Θ = (0, 0,Θ) and β = ~0 leads to a counterclockwise rotation
in the xy-plane. Show that Θ = ~0 and β = (0, 0, η) leads to a boost in z-direction. 3 pts.

1The number of (not necessarily independent) generators is the same for all representations but the space on
which the generators act, in this case the space of functions, is infinite dimensional.

2Representations of the Lie algebra correspond to representations of the connected component of the Lie group.
Transformations not in the proper orthochronous branch of the Lorentz group can mix representations of the
Lorentz algebra. One example are left- and right-handed Weyl spinors which are interchanged under parity
transformations.

3By Lorentz transformation we generally mean proper orthochronous.
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2. Write the commutation relations among these re-defined generators in a concise form (i.e.
not by inserting all possible indices). Show that the combinations

J+ =
1

2
(L + iK) and J− =

1

2
(L− iK) (5)

commute with one another and separately satisfy the commutation relations of angular
momentum. 3 pts.

This shows that the (complexified) lie algebra of the Lorentz group is isomorphic to the (com-
plexified) lie algebra of two independent copies of SU(2). The representation theory of SU(2)
should already be familiar to you. Representations are labelled with half-integers j ∈ 1

2N and
the dimension for a given j is d = 2j+1. In fact finite dimensional representations of the Lorentz
group can be labelled by a tuple (j+, j−) ∈ 1

2N⊗
1
2N and the dimension is (2j− + 1)(2j+ + 1).

3. Lets take a closer look at the representations (12 , 0) and (0, 12). In (12 , 0) the generators

J+
i = σi

2 are represented by the pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (6)

while J− = 0. What is the dimension of this representation? An object in this represen-
tation is called a left-handed Weyl spinor usually denoted ψL. What is the action

ψL → ΛLψL (7)

of a general Lorentz transformation on ψL in terms of rotations Θ and boosts β? An object
in the (0, 12) representation is called a right-handed Weyl spinor. How does the Lorentz
group act on ψR? 1 pt.

4. Show that σ2σiσ2 = −σi∗. Use this to show that σ2Λ∗Lσ
2 = ΛR and ψcL = iσ2ψ∗L transforms

as a right-handed Weyl spinor, i.e.

ψcL → ΛRψ
c
L, (8)

while on the other hand ψcR = −iσ2ψ∗R transforms as a left-handed Weyl spinor, i.e.

ψcR → ΛLψ
c
R. (9)

2 pt.

To show that (12 ,
1
2) corresponds to the vector representation first observe that a general 2× 2

hermitian matrix can be parametrised as

x =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
. (10)

5. Show that det x = xµηµνx
ν . Now introduce two bases of hermitian 2× 2 matrices

σµ = (1, σi), σ̄µ = (1,−σi), (11)

and show that

σµσ̄ν + σν σ̄µ =2ηµν1,

tr(σµσ̄ν) =2δµν . (12)
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Finally show

x = σ̄µx
µ, xµ =

1

2
tr(σµx). (13)

Thus, there is a one to one correspondence between 4-vectors and hermitian 2×2 matrices
where the Minkowski norm corresponds to the determinant. 1 pts.

6. A linear map of hermitian matrices x→ x′ ≡ AxA† preserves the determinant if |detA| =
1 and since a phase cancels in the transformation we can take A ∈ SL(2,C). The li-
near transformation x′µ = Λ(A)µνx

ν on the associated 4-vector is norm preserving and
therefore a Lorentz transformation. Using the previous results it is given by

Λ(A)µν =
1

2
tr(σµAσ̄νA

†). (14)

Show that Aσ̄µA
† = σ̄νΛνµ and A†σµA = σν(Λ−1)νµ. 2 pts.

7. An element in the (12 ,
1
2) = (12 , 0)⊗ (0, 12) representation can be specified by giving a left-

and a right-handed Weyl spinor ψL, ξR. Define ξL = −iσ2ξ∗R, ψR = iσ2ψ∗L and calculate

explicitly that the bilinear ξ†Rσ
µψR transforms under a boost in z-direction as a 4-vector.

2 pts.

Note that ξ†Lσ̄
µψL also transforms as a 4-vector and both bilinears are in general complex. To

obtain the real vector representation one has to demand the (Lorentz invariant) reality condition

ξ†Rσ
µψR = ξ†Lσ̄

µψL.

8. Show that (ξ†Rσ
µψR)∗ = ξ†Lσ̄

µψL. 1 pt.
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