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Note that there was a blunder on sheet 4 where the tuples should have been (j,j-)
and the generators of the left handed Weyl representations are J, = %L, J_=0.

—~HOMEWORK—

1 The Dirac representation (7 pts.)

The finite dimensional representations of the Lorentz algebra are classified by tuples (jy,j_) €
%N ® %N and you showed in the last homework that left- and right handed Weyl spinors, which
are in the (%, 0) and (0, %) representation respectively, transform as

vp—exp (=i0- 2= 8- 2)br = A, vr—exp(—i0-Z+8-2)vn=Arbp (1)

Remember that apart from the proper orthochronous branch the full Lorentz group has three
more components not connected to the identity, one of which can be obtained by a space
inversion or parity transformation, which in the 4-vector representation looks like

1 0 0 O
P=lo0 2o @
0o 0 0 -1
It acts on the generators as
J' = J, K'— -K' (3)

and therefore exchanges j_ <> ji+. In order to construct a manifestly parity invariant theory
with spinors (like quantum electrodynamics) one can work with the Dirac representation (%, 0)®
(0, %) An object in this representation can be written down as!

%:(f;) (4)

!This is the so-called chiral representation. Other unitarily equivalent representations lead to a different choice
of v* later on.



with 17, and &g being a left- and right handed Weyl spinor respectively?. The transformation

law is

A, O
\I’D—)(O AR>\I/D

and under parity inversion

\IJD—>P\IJD:<(1) 3)%:(55)

1. Define the quantities
) )
ot .= —(ot5" — o¥5"), o = —(atc” —"c"
2 ) 1 )

and show that the transformation law on Weyl spinors can be written as

i i
Yr, — exp(—§wwcr“”)m, YR — exp(—§wuu5“”)¢ﬁ'-

()

(8)

Hint: Remember how new generators were defined on the last exercise sheet and express

(1) in terms of the original generators. 1 pt.

2. The so called gamma matrices are given in the chiral representation by

0 ot
wo_
(0 %)

Show that the Lorentz transformation of a Dirac spinor (5) can be written as

‘IJD — exXp <;wW,S’“’> \IfD = AD\I’D,

with SH = i'['y“,*y”]. 1 pt.

3. The gamma matrices satisfy a Clifford algebra, the so-called Dirac algebra

{7 =AY A =20 X L
Use this algebra to show that
", §77) = mleol” v,
with the generators of the 4-vector representation
ml??1, = i oy — noay),

as introduced on sheet 2. 1 pt.

(11)

(12)

(13)

ZNote that a complex 4-vector was also specified by a left- and a right handed Weyl spinor. This is due to the
fact that the dimension of the tensor product of two Weyl representations is the same as that of a direct sum.

The Lorentz group however acts quite differently.



The commutator relation is equivalent to
i i i y
(1+ SwprSP (1 = SwpeSP7) = (1= iwmm[m])“l/fy : (14)

This is the infinitesimal version of ABH“A p = A*,~Y, which you can use in the next exercise.

4. It should by now be clear that the Lorentz transformation on a field of Dirac spinors 9 (x)
is given by
P(x) = Apy (A~ ). (15)
Show that the Dirac equation
(17" —m)y(x) =0 (16)

is invariant under Lorentz transformations. 1 pt.

5. Show that a Dirac spinor field ¢(x) that satisfies the Dirac equation automatically satisfies
the Klein-Gordon equation (O 4 m?)y(z) = 0. 1 pt.

6. Show that the spinor ¢ = 9770 transforms as 1) — @Z_JABI and that the lagrangian

EDirac = 7/](3:) (Z"‘)/'uau - m)¢(l’) (17)
therefore transforms as a Lorentz scalar. What are the equations of motion? 1 pt.

7. Show that (7#)T = 494#~0 and that the equations of motion for +(x) can be obtained
from that for ¢(z) by taking the hermitian transpose. 1 pt.

2 Classical solutions (8 pts.)

Since the Dirac field also obeys the Klein-Gordon equation we can directly deduce that a basis
of solutions is again given by plane wave solutions of positive and negative frequency, i.e.

Yi(z) = u(p)e™™ and Y_(z) = v(p)e®”, (18)
with p? = m? and p° > 0.

1. What constraint is put onto u(p) by the Dirac equation? Show that in the rest frame
pt = (m,0,0,0) = pj) of a massive particle this constraint is solved by

u(po) = m( : ) | (19)

1 pt.
We normalise ¢ so that £7¢ = 1.
2. Apply a boost in z direction to u(po) with rapidity n so that p* = (E,0,0,p®) = A*,pY
and show that
_+3 3
VE+p° (55) +VE-p* (557 ) | ¢

u(p) = 5 (20)

VE+p3 (52) + VE—p® (52) | ¢

Hint: First apply the boost to pg and find a relation between E, p3 and m,n. Then transform
u(po) using the transformations on left- and right handed Weyl spinors. 2 pt.
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3. Show that this result can be simplified to

u(p) = < %g ) : (21)

This expression is valid for arbitrary momenta. 1 pt.

4. Show that (p-o)(p- &) = p> = m? Show furthermore that u'(p)u(p) = 2E,£7¢ and
a(p)u(p) = 2meTe, with @ = uf40. 1 pt.

5. What changes in (21) for the negative frequency solutions? 1 pt.

6. With an orthogonal basis £%, s = 1,2 satisfying £7¢ = 1 you get two linearly independent

solutions for u(p), N
sy [ VPO
u (p) - < \/ﬁfs ) : (22)

Show the completeness relation

1 pt.
7. What is the analogon for the negative frequency solutions? 1 pt.

These relations will be very useful when you calculate actual fermion scattering processes and
need to average over initial spins and/or sum over final state spins.



