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Note that there was a blunder on sheet 4 where the tuples should have been (j+, j−)

and the generators of the left handed Weyl representations are J+ = σi

2 , J− = 0.

–Homework–

1 The Dirac representation (7 pts.)

The finite dimensional representations of the Lorentz algebra are classified by tuples (j+, j−) ∈
1
2N⊗

1
2N and you showed in the last homework that left- and right handed Weyl spinors, which

are in the (12 , 0) and (0, 12) representation respectively, transform as

ψL → exp
(
−iΘ · σ

2
− β · σ

2

)
ψL ≡ ΛLψ, ψR → exp

(
−iΘ · σ

2
+ β · σ

2

)
ψR ≡ ΛRψR. (1)

Remember that apart from the proper orthochronous branch the full Lorentz group has three
more components not connected to the identity, one of which can be obtained by a space
inversion or parity transformation, which in the 4-vector representation looks like

Pµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2)

It acts on the generators as

J i → J i, Ki → −Ki (3)

and therefore exchanges j− ↔ j+. In order to construct a manifestly parity invariant theory
with spinors (like quantum electrodynamics) one can work with the Dirac representation (12 , 0)⊕
(0, 12). An object in this representation can be written down as1

ΨD =

(
ψL
ξR

)
, (4)

1This is the so-called chiral representation. Other unitarily equivalent representations lead to a different choice
of γµ later on.
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with ψL and ξR being a left- and right handed Weyl spinor respectively2. The transformation
law is

ΨD →
(

ΛL 0
0 ΛR

)
ΨD (5)

and under parity inversion

ΨD → PΨD =

(
0 1
1 0

)
ΨD =

(
ξR
ψL.

)
. (6)

1. Define the quantities

σµν :=
i

4
(σµσ̄ν − σν σ̄µ), σ̄µν :=

i

4
(σ̄µσν − σ̄νσµ) (7)

and show that the transformation law on Weyl spinors can be written as

ψL → exp(− i
2
ωµνσ

µν)ψL, ψR → exp(− i
2
ωµν σ̄

µν)ψR. (8)

Hint: Remember how new generators were defined on the last exercise sheet and express
(1) in terms of the original generators. 1 pt.

2. The so called gamma matrices are given in the chiral representation by

γµ =

(
0 σµ

σ̄µ 0

)
. (9)

Show that the Lorentz transformation of a Dirac spinor (5) can be written as

ΨD → exp

(
− i

2
ωµνS

µν

)
ΨD ≡ ΛDΨD, (10)

with Sµν ≡ i
4 [γµ, γν ]. 1 pt.

3. The gamma matrices satisfy a Clifford algebra, the so-called Dirac algebra

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν × 14×4. (11)

Use this algebra to show that

[γµ, Sρσ] = m[ρσ]µ
νγ

ν , (12)

with the generators of the 4-vector representation

m[ρσ]µ
ν = i(ηρµδσν − ησµδρν), (13)

as introduced on sheet 2. 1 pt.

2Note that a complex 4-vector was also specified by a left- and a right handed Weyl spinor. This is due to the
fact that the dimension of the tensor product of two Weyl representations is the same as that of a direct sum.
The Lorentz group however acts quite differently.
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The commutator relation is equivalent to

(1 +
i

2
ωρσS

ρσ)γµ(1− i

2
ωρσS

ρσ) = (1− i

2
ωρσm

[ρσ])µ
ν
γν . (14)

This is the infinitesimal version of Λ−1D γµΛD = Λµνγ
ν , which you can use in the next exercise.

4. It should by now be clear that the Lorentz transformation on a field of Dirac spinors ψ(x)
is given by

ψ(x)→ ΛDψ(Λ−1x). (15)

Show that the Dirac equation

(iγµ∂µ −m)ψ(x) = 0 (16)

is invariant under Lorentz transformations. 1 pt.

5. Show that a Dirac spinor field ψ(x) that satisfies the Dirac equation automatically satisfies
the Klein-Gordon equation (� +m2)ψ(x) = 0. 1 pt.

6. Show that the spinor ψ̄ ≡ ψ†γ0 transforms as ψ̄ → ψ̄Λ−1D and that the lagrangian

LDirac = ψ̄(x)(iγµ∂µ −m)ψ(x) (17)

therefore transforms as a Lorentz scalar. What are the equations of motion? 1 pt.

7. Show that (γµ)† = γ0γµγ0 and that the equations of motion for ψ̄(x) can be obtained
from that for ψ(x) by taking the hermitian transpose. 1 pt.

2 Classical solutions (8 pts.)

Since the Dirac field also obeys the Klein-Gordon equation we can directly deduce that a basis
of solutions is again given by plane wave solutions of positive and negative frequency, i.e.

ψ+(x) = u(p)e−ip·x and ψ−(x) = v(p)eip·x, (18)

with p2 = m2 and p0 > 0.

1. What constraint is put onto u(p) by the Dirac equation? Show that in the rest frame
pµ = (m, 0, 0, 0) = pµ0 of a massive particle this constraint is solved by

u(p0) =
√
m

(
ξ
ξ

)
. (19)

1 pt.

We normalise ξ so that ξ†ξ = 1.

2. Apply a boost in z direction to u(p0) with rapidity η so that pµ = (E, 0, 0, p3) = Λµνp
ν
0

and show that

u(p) =

 [√
E + p3

(
1−σ3

2

)
+
√
E − p3

(
1+σ3

2

)]
ξ[√

E + p3
(
1+σ3

2

)
+
√
E − p3

(
1−σ3

2

)]
ξ

 (20)

Hint: First apply the boost to p0 and find a relation between E, p3 and m, η. Then transform
u(p0) using the transformations on left- and right handed Weyl spinors. 2 pt.
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3. Show that this result can be simplified to

u(p) =

( √
p · σξ√
p · σ̄ξ

)
. (21)

This expression is valid for arbitrary momenta. 1 pt.

4. Show that (p · σ)(p · σ̄) = p2 = m2. Show furthermore that u†(p)u(p) = 2Epξ
†ξ and

ū(p)u(p) = 2mξ†ξ, with ū = u†γ0. 1 pt.

5. What changes in (21) for the negative frequency solutions? 1 pt.

6. With an orthogonal basis ξs, s = 1, 2 satisfying ξ†ξ = 1 you get two linearly independent
solutions for u(p),

us(p) =

( √
p · σξs√
p · σ̄ξs

)
. (22)

Show the completeness relation∑
s=1,2

us(p)ūs(p) =

(
m p · σ
p · σ̄ m

)
= γ · p+m. (23)

1 pt.

7. What is the analogon for the negative frequency solutions? 1 pt.

These relations will be very useful when you calculate actual fermion scattering processes and
need to average over initial spins and/or sum over final state spins.
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