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–Homework–

1 Canonical quantisation of the electromagnetic field (15 pts.)

The principles we learned quantising the Klein-Gordon and Dirac field also apply to the elec-
tromagnetic field, with the additional complication that due to gauge invariance we have a
redundancy in our description. In the path integral formulation one can fix the gauge in a way
that easily generalises to non-abelian gauge theories which one encounters in the weak and
strong interaction. However, in this exercise we will follow the canonical route. As you know,
the Lagrangian of pure electrodynamics is given by

L = −1

4
FµνF

µν . (1)

1. Introducing a new non-dynamical field κ1 we can write down a modified Lagrangian

L′ = −1

4
FµνF

µν − κ

2
(∂µA

µ)2. (2)

Note that in the Lagrangian formalism the equations of motion for κ enforce the Lorentz
gauge condition

∂µA
µ = 0. (3)

Set κ = 1, remembering the equations of motion it imposes, and show that up to a total
derivative L′ equals

L̃ = −1

2
(∂µAν)(∂µAν) (4)

What are the canonical momenta πµ to the fields Aµ? In the following we will work with
L̃ and later impose the gauge condition as a condition on the states. 1 pt.

2. Derive the equations of motion for Aµ and argue that you can expand the field as

Aµ(x) =

∫
d3p

(2π)3
1√
2ωp

3∑
λ=0

[
εµ(p, λ)ap,λe

ip·x + εµ∗(p, λ)a†p,λe
−ip·x

]
, (5)

with ωp = |p| = p0. Why is the coefficient of the negative frequency part of the form

εµ∗(p, λ)a†p,λ? Write down the corresponding expansion for the canonical momenta πµ(x).
1 pt.

1That the field is non-dynamical follows from the absence of time-derivatives of κ in the Lagrangian. This
so-called auxiliary field is nothing more than a Lagrange multiplier.
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3. Impose the canonical commutation relations

[Aµ(x, t), πν(y, t)] =iηµνδ(3)(x− y), (6)

[Aµ(x, t), Aν(y, t)] =[πµ(x, t), πν(y, t)] = 0. (7)

Calculate

[∂µA
µ(x, t), Aν(y, t)] (8)

and show that, however tempting it is, imposing the gauge condition ∂µA
µ = 0 directly

on the field operator leads to inconsistencies. Note that the Minkowski metric in the first
commutation relation is forced upon us by Lorentz invariance. 1 pt.

In a given Lorentz frame we can choose a basis of polarisation vectors starting with two spacelike
vectors

ε(p, 1) = (0, ε(p, 1)), ε(p, 2) = (0, ε(p, 2)), (9)

which we demand to be transversal, i.e.

p · ε(p, 1) = p · ε(p, 2) = 0. (10)

In addition we take the spacelike longitudinal vector ε(p, 3) = (0,p/|p|) and the timelike vector
ε(p, 0) = (1,0). Furthermore we choose ε(p, 1) and ε(p, 2) so that the basis is real, orthogonal
and normalised according to2

εµ(p, λ)εµ(p, λ′) = ηλλ′ . (11)

4. Show that

ap,λ = −iηλλ
∫
d3xe−ip·x

1√
2ωp

εµ(p, λ) [πµ(x) + iωpAµ(x)] . (12)

Derive the corresponding expression for a†p,λ and the commutation relations for the crea-
tion and annihilation operators

[ap,λ, a
†
p′,λ′ ] =− (2π)3δ(3)(p− p′)ηλλ′ ,

[ap,λ, ap′,λ′ ] =[a†p,λ, a
†
p′,λ′ ] = 0. (13)

3 pt.

5. Calculate the normal ordered Hamiltonian (that means you bring all the annihilation
operators to the right by convention, without picking up singular delta distributions) and
show that

H =

∫
d3p

(2π)3
ωp

−a†p,0ap,0 +
∑

λ=1,2,3

a†p,λap,λ

 . (14)

Use Noether’s theorem to calculate the normal ordered momentum operator

P =

∫
d3k

(2π)3
p

−a†p,0ap,0 +
∑

λ=1,2,3

a†p,λap,λ

 . (15)

3 pt.

2Note that in this case ηλλ′ should not be seen as a tensor but only encodes the normalisation of the states.
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6. Calculate the norm of a one-photon state

〈1p,0|1p,0〉 = 〈0|ap,0a†p,0|0〉. (16)

You should notice two things odd, one of them being a delta distribution δ(3)(0). However,
this you already encountered in quantum mechanics and the infinity is due to the same
difficulty in normalising infinitely extended plane wave solutions. To remedy this we smear
out the momentum using a smooth distribution fλ(p), peaking at the desired momentum
and normalised to ∫

d3p|fλ(p)|2 = 1. (17)

Calculate the norm of the smeared out state

|1̃p,0〉 =

∫
d3pf0(p)a†p,0|0〉 (18)

and show that whats really odd is that this state has a negative norm!3 1 pt.

7. Although the occurrence of negative norm states seems fatal it turns out that one can
still make the theory work by restricting attention to a subset of states which one deems
physical. In our case these are exactly the states which, on average, satisfy the gauge
condition:

〈Φphys|∂µAµ(x, t)|Φphys〉 = 0 (19)

We can decompose the field Aµ(x, t) into positive and negative frequency parts

Aµ(x, t) = A(+)
µ (x, t) +A(−)

µ (x, t), (20)

consisting only of annihilation or creation operators respectively. Show that the equivalent
condition

∂µA(+)
µ |Ψphys〉 = 0 (21)

leads to
[ap,0 − ap,3] |Ψphys〉 = 0 ⇔ 〈Ψphys| [a†p,0 − a

†
p,3] = 0. (22)

1 pt.

8. Show that a†p,1|0〉 and a†p,2|0〉 are physical states while a†p,0|0〉 and a†p,3|0〉 are not. Show

that |φ〉 = (a†p,0 − a
†
p,3)|0〉 is physical. 1 pt.

9. As you know the photon as a massless spin 1 particle has only two physical polarisation
states or degrees of freedom. Show that the state |φ〉 has vanishing norm, vanishing energy
and vanishing momentum. Show that to the energy and momentum expectation value of
physical states only the transversal modes contribute. 1 pt.

3Note that this is not due to the specific form of normalisation we choose since a complete basis of polarisations
must contain one timelike vector.
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In fact its easy to see from (22) that all matrix elements of the form

〈Ψphys|
[
(a†p,0 − a

†
p,3)|Ψ

′〉
]

(23)

vanish and therefore the states containing
”
pseudo photons“ fully decouple from the physical

sector. We therefore have an equivalence class

Ψphys ∼ Ψphys + c|φ′〉 (24)

where |φ′〉 is a physical state containing pseudo photons and can always choose a representative
with only transversal excitations.

10. Show that

〈0|Aµ(x)Aν(y)|0〉 = −ηµν
∫

d3p

(2π)3
1

2ωp
exp [−ip · (x− y)] (25)

and with this derive the Feynman propagator

Dµν
F (x− y) = 〈0|T [Aµ(x)Aν(y)] |0〉 =

∫
d4p

(2π)4
−iηµν

p2 + iε
exp [−ip · (x− y)] . (26)

Hint: you can use the completeness relation on the polarisation vectors

3∑
λ=0

ηλλε
µ(p, λ)εν(p, λ) = ηµν . (27)

2 pt.

The necessity to sum over all polarisation vectors to obtain the form (26) indicates that although
the polarisation modes λ = 0, 3 are unphysical as initial or final states they have to appear as
intermediate particles to make the theory consistent.
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