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–Homework–

1 The S-Matrix (15 pts.)

To cut some corners on the way to real-world calculations we postulate the necessary formulae
which will be proven at a later point in the lecture. In order to obtain measurable quantities
we first have to calculate transition amplitudes

lim
T→∞

〈p1p2 . . . | exp−iH(2T ) |k1k2 . . . 〉 ≡ 〈p1p2 . . . |S|k1k2 . . . 〉, (1)

between n particles with momenta k1,k2, . . . in the infinite past and m particles with momenta
p1,p2, . . . in the infinite future. We will restrict ourselves to the case of two incoming particles.
Note that for a general species of particles one also has to specify the discrete quantum numbers
in the states. The so-called S-matrix is just the time-evolution operator in the limit of very
large T . It is convenient to decompose it as

S = 1 + iT, (2)

so that the T -matrix encodes only the non-trivial interactions. We introduce the invariant
matrix element M(k1, k1 → p1, p2, . . . ) via

〈p1p2 . . . |iT |k1k2〉 = (2π)4δ(4)

(
k1 + k2 −

∑
i

pi

)
· iM(k1, k1 → p1, p2, . . . ) (3)

to get rid of an overall momentum conserving delta distribution which is common to all scat-
tering processes. However in formula (1) and (3), |k1k2 . . . 〉 and |p1p2 . . . 〉 are eigenstates of
the full Hamiltonian H = H0 +Hint at some common reference time. As we needed to express
the interacting vacuum in terms of the free vacuum and interaction picture fields, we need a
similar expression relating the multi-particle states to the eigenstates

|k1k2 . . . 〉0 =
∏
i

√
Eki

a†ki
|0〉 (4)

of the unperturbed theory1. It is obvious that the technique we used for |Ω〉 cannot be adapted
in a simple way. Without derivation we give the result

iM(k1, k1 → p1, p2, . . . ) · (2π)4δ(4)

(
k1 + k2 −

∑
i

pi

)
=(

sum of all connected, amputated Feynman
diagrams with k1, k2 incoming and p1, p2, . . . outgoing

)
. (5)

The prescription on the right hand side certainly needs some explanation.

1Here the creation operators a†ki
are the same that occur in the expansion of the intraction picture field φI(x)
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1. The required connectedness is stricter than the absence of vacuum bubbles. We demand
that all the external particles have to participate in the process. An equivalent require-
ment is that you can not draw a line seperating parts of the diagram without severing a
propagator.

2. Amputated means that you cut off the bubbles from the particles propagating to the
interaction:

Figure 1: The bubbles at the external propagators have to be amputated along the dashed lines.

The (position space) Feynman rules to calculate the contribution of a diagram to a transition
amplitude in φ4 theory are

1. For each propagator, x y = DF (x− y);

2. For each vertex, z = (−iλ)
∫
d4z;

3. For each external line,
x

= e−ip·x;

4. Divide by the symmetry factor.

Your exercise is to translate these rules into momentum space, find corresponding rules for the
Dirac- and the electromagnetic field and calculate an elementary process in quantum electro-
dynamics.

1. Show that the integration introduced by each vertex “absorbs” external lines or parts of
the exponential in the integrand of each propagater it is connected to and turns them
into a momentum conserving delta distribution. Why will there always be an overall
momentum conserving delta distribution associated with each diagram? For what kind of
diagrams are all internal momenta fixed by momentum conservation? 2 pt.

2. Write down the momentum space Feynman rules, so that

iM = sum of all connected, amputated diagrams (6)

and there is no reference to space-time points left. 2 pts.
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3. The position space Feynman rule for the external leg follows from “contraction” of an
interaction field with an external particle

φ+I (x)|k〉0 =φ+I (x)
√
Eka

†
k|0〉 = e−ik·x|0〉,

0〈k|φ−I =〈0|eik·x. (7)

Use your knowledge about the quantised Dirac- and electromagnetic field to calculate how
the rule changes for fermions, antifermions and photons. Give the momentum space rule
for incoming, as well as for outgoing particles. 3 pts.

4. For bosons the direction of momentum along internal lines is arbitrary. For fermions this
is different. How is the momentum flow related to the particle number flow? 2 pts.

5. Guess the momentum space Feynman rules for propagators of the Dirac- and electromag-
netic field. For fermions let the arrow on a propagator indicate the direction of particle
number flow. 1 pt.

Now consider a theory of one species of fermions coupled to an electromagnetic field via Hint =
−ieψ̄γµψAµ. In addition to the rules for the fermions and the electromagnetic field there is
now a vertex with momentum space Feynman rule

µ = −ieγµ.

6. Show that the leading-order contribution to the scattering of two distinguishable fermions
with ingoing momenta k, k′ and outgoing momenta p, p′ is given by

iM = (−ie)2ū(p′)γµu(p)
−igµν

(p′ − p)2
ū(k′)γνu(k). (8)

Hint: Think about which diagrams are excluded by the requirement of distinguishability. 1
pt.

7. Take the non relativistic limit and use the Born approximation

〈p′|iT |p〉 = −iṼ (p′ − p)(2π)δ(Ep′ − Ep), (9)

to obtain the momentum space potential Ṽ (q) for one of the scattered particles. Calculate
the Fourier transform to obtain the Coloumb potential. Is it attractive or repulsive? 3
pts.

8. What changes for the scattering of a fermion and an antifermion? 1 pt.
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