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1 Modular invariance of the torus partition function 5 points

We consider the modular invariance of the partition function of a closed string propagating on
an n-dimensional torus Tn. The torus is specified by its metric GIJ and background B-field BIJ .
Their inverses are as usual denoted by raised indices. This torus should not be confused with the
worldsheet torus, that is specified by τ = τ1 + iτ2 taking values in the fundamental domain of
SL(2,Z). The partition function itself reads
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Here we have used the following abbrevations
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where KI and WI denote the momentum respectively the winding mode in the I ′th direction. The
invariance under SL(2,Z) needs not to be checked for the partition function alone but for the path
integral which results in the combination
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where the first factor stems from the integration over the momentum.

1. Show the invariance under the transformation T : τ → τ + 1

2. Show the invariance under the transformation S : τ → − 1
τ

Hint: For the second step you need the Poisson resummation formula∑
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where f̂ denotes the Fourier transform of f . Note that the Fourier transform of e−at
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where A is a symmetric m×m matrix. Show then that the A that is relevant for you is given by
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2 Path integral derivation of T-duality 5 points

We consider a scalar field
ϕ : Σg −→ S1, (2.1)

where Σg is a Riemann surface of genus g and ϕ = x
R has periodicity 2π, R being the radius

of the circle. In addition, we choose local coordinates σ1, σ2. The worldsheet metric is given by
h = hµνdσ

µdσν . Finally we introduce a basis ωi, i = 1, . . . 2g of the second cohomology group
H1(Σ1,R) such that the Poincaré dual one-cycles γj , j = 1, . . . 2g defined by∫
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ωi = δij (2.2)

form a basis of the integer valued homology group H1(Σg,Z). Then∫
Σg

ωi ∧ ωj = J ij (2.3)

is an element of GL(2g,Z). The action of ϕ is given by
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1. Consider the action
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and use the equations of motion for B to show that S′ is equivalent to S. (Alternatively you
may complete the square.) Hint: You should find that

B = iR2 ∗ dϕ. (2.6)

2. The most general form of dϕ is given by
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where ϕ0 is single-valued on Σg. By integrating out dϕ0 show that B has to take the form

B = dϑ0 +
2g∑
i=1

aiω
i (2.8)

3. Integrating out the multi-valued part of dϕ is done by summing over the integers ni. Use this
and the identity ∑

n
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to show that the B = dϑ, where ϑ is a variable of period 2π.



4. Plugging this into the original action, show that one ends up with
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i.e. a sigma model of radius R is equivalent with one with radius 1
R .

5. Identity Rdϕ and iR ∗ dϕ with the currents of winding and momentum modes respectively.
Which one is topological and which one a proper current? What happens under T-duality?
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