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–Presence exercises–

1 The relativistic point particle

We consider the action for a relativistic point particle

Spp = −m
∫
ds = −m

∫ √
−ηµνẊµẊνdτ , (1)

where τ parameterizes the worldline of the particle and ηµν is the D-dimensional Minkowski
metric.

1. Show that the action is invariant under Poincaré transformations.

2. Show that the action is invariant under reparametrizations τ → τ ′(τ).

3. Show that

pµ =
mẊµ√
−ηνρẊνẊρ

, (2)

is a conserved quantity. Do this once by evaluating the Euler Lagrange equations and
once by exploiting the symmetry Xµ → Xµ + bµ. Hint: For the latter, assume that bµ

depends on τ to do a partial integration and only then restrict to constant bµ.

4. Why is this action inappropriate to describe massless particles?

5. Show that

Se = −1

2

∫
dτe

(
− 1

e2
ẊµẊνηµν +m2

)
, (3)

is equivalent to the action (1). Hint: Integrate out e.

6. Explain the statement “We have coupled the particle to worldline gravity”. What kind of
field is e?

7. Show the invariance of the new action (11) under reparametrizations of τ . How does e
transform?
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2 The Nambu-Goto action versus the Polyakov action

The Nambu-Goto action for a string is given by

SNG = −T
∫
d2σ
√
−det (∂αXµ∂βXνηµν) . (4)

Here σα, α = 0, 1 label the worldsheet time τ and space σ.

1. Write down explicitly the action (17), i.e. without referring to σα, but to τ and σ instead.

2. What is the geometric interpretation of this action?

3. Show that the Polyakov action

SP = −T
2

∫
d2σ
√
−h
(
hαβ∂αX

µ∂βX
νηµν

)
, (5)

is equivalent to the Nambu-Goto action.

–Homework–

3 Symmetries of the string and their implications 5 Points

3.1 Global symmetries 2 Points

Show that the Polyakov action is invariant under Poincaré transformations

Xµ → ΛµνX
ν + bµ . (6)

Evaluate the corresponding conserved currents using the Noether procedure which we briefly
recall. If the Lagrangian is invariant under an infinitesimal transformation of the fields given
by

φa → φa + δφa , δφa = εihai (φ
b) , (7)

where εi is infinitesimal and hai denotes a function of the fields φa, then the current jαi defined
by

εijαi =
∂L

∂(∂αφa)
δφa , (8)

is conserved. Note that i might be a multi-index. The infinitesimal variations for Poincaré
transformations are respectively given by

Xµ → Xµ + εµ , Xµ → XµεaµνX
ν , aµν = −aνµ . (9)

Evaluate the currents using

hαβ =

(
−1 0
0 1

)
. (10)

See also the exercise (3.2) and equation (46).
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3.2 Local symmetries

1. Show that the action is invariant under worldsheet reparametrizations

σα → σ′
α
(σβ) . (11)

2. Show that the action is invariant under Weyl transformations

hαβ → eφ(σ
α)hαβ . (12)

3. It can be shown (see. e.g. Martin Schottenloher - A mathematical introduction to confor-
mal field theory) that locally there exists parametrizations such that the metric is of the
form

hαβ =

(
−1 0
0 1

)
. (13)

Why is it in general not possible to choose this metric globally?

4 Two-dimensional gravity

Show that the energy momentum tensor in two dimension vanishes identically due to Einstein’s
equation. Hint: The only non-vanishing component of the Riemann tensor in two dimensions is

R0101 = −R0110 = −R1001 = R1010 . (14)

5 The equations of motion

In the following, we consider the range of worldsheet coordinates given by

τ ∈ R , σ ∈ [0, π] . (15)

1. Show that for the gauge fixed metric (39) the action takes the simple form

S =
T

2

∫
d2σ

(
Ẋ2 −X ′2

)
. (16)

Here we have denoted by Ẋ and X ′ the derivatives with respect to τ and σ.

2. Derive the equations of motion. In addition, show that there is a boundary term

−T
∫
τ ′
(
X ′µδX

µ

∣∣∣∣
σ=π

−X ′µδXµ

∣∣∣∣
σ=0

)
. (17)

3. Show that there are three possibilities in order to make the boundary term vanish:

a)

Xµ(σ, τ) = Xµ(σ + π, τ) (18)
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b)

X ′µ(σ, τ) = 0, σ = 0, π (19)

c)

Xµ

∣∣∣∣
σ=0

= Xµ
0 , Xµ

∣∣∣∣
σ=π

= Xµ
π (20)

Comment on the physical interpretations of the three boundary conditions. Why is the
last one “strange”?

The general solution to the equations of motion takes the form

Xµ(σ, τ) = f(σ)g(τ) . (21)

4. Show that for closed strings

∂2f(σ)

∂σ2
= cf(σ) ,

∂2g(τ)

∂τ2
= cg(τ), c = −4m2, m ∈ Z . (22)

5. Conclude that the general solution for closed strings takes the form

Xµ(σ, τ) = Xµ
R(τ − σ) +Xµ

L(τ + σ) , (23)

where

Xµ
R =

1

2
xµ +

1

2
l2sp

µ(τ − σ) +
i

2
ls
∑
n6=0

1

n
αµne

−2in(τ−σ) ,

Xµ
L =

1

2
xµ +

1

2
l2sp

µ(τ + σ) +
i

2
ls
∑
n6=0

1

n
α̃µne

−2in(τ+σ) .

(24)

Here n runs over all non-zero integers. Which conditions have to be imposed on αµn, α̃
µ
n

in order to make Xµ real?
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