Exercises in Superstring Theory

Prof. Dr. Albrecht Klemm
Sheets \& Organization: César Fierro-Cota

The sheets will be collected during the first lecture of the week, unless differently specified.
There you will be provided with a new sheet.
The rooms and tutors for the exercise classes are as follows:

Thursday, 14-16 Serminarroom I, BCTP Rongvoram Nivesvivat
 Friday, 16-18 Serminarroom II, BCTP Reza Safari

Tutorials start on wednesday, 18.10.2018. In the first week you will solve a presence exercise.
If you have any questions feel free to contact me under fierro@th.physik.uni-bonn.de. You can find the addresses of the tutors on the course website:
http://www.th.physik.uni-bonn.de/klemm/strings1819/

-Presence exercises-

1 The relativistic point particle

We consider the action for a relativistic point particle

$$
\begin{equation*}
S_{p p}=-m \int d s=-m \int \sqrt{-\eta_{\mu \nu} \dot{X}^{\mu} \dot{X}^{\nu}} d \tau \tag{1}
\end{equation*}
$$

where τ parameterizes the worldline of the particle and $\eta_{\mu \nu}$ is the D-dimensional Minkowski metric.

1. Show that the action is invariant under Poincaré transformations.
2. Show that the action is invariant under reparametrizations $\tau \rightarrow \tau^{\prime}(\tau)$.
3. Show that

$$
\begin{equation*}
p^{\mu}=\frac{m \dot{X}^{\mu}}{\sqrt{-\eta_{\nu \rho} \dot{X}^{\nu} \dot{X}^{\rho}}}, \tag{2}
\end{equation*}
$$

is a conserved quantity. Do this once by evaluating the Euler Lagrange equations and once by exploiting the symmetry $X^{\mu} \rightarrow X^{\mu}+b^{\mu}$. Hint: For the latter, assume that b^{μ} depends on τ to do a partial integration and only then restrict to constant b^{μ}.
4. Why is this action inappropriate to describe massless particles?
5. Show that

$$
\begin{equation*}
S_{e}=-\frac{1}{2} \int d \tau e\left(-\frac{1}{e^{2}} \dot{X}^{\mu} \dot{X}^{\nu} \eta_{\mu \nu}+m^{2}\right), \tag{3}
\end{equation*}
$$

is equivalent to the action (1). Hint: Integrate out e.
6. Explain the statement "We have coupled the particle to worldline gravity". What kind of field is e ?
7. Show the invariance of the new action (3) under reparametrizations of τ. How does e transform?

2 The Nambu-Goto action versus the Polyakov action

The Nambu-Goto action for a string is given by

$$
\begin{equation*}
S_{N G}=-T \int d^{2} \sigma \sqrt{-\operatorname{det}\left(\partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \eta_{\mu \nu}\right)} . \tag{4}
\end{equation*}
$$

Here $\sigma^{\alpha}, \alpha=0,1$ label the worldsheet time τ and space σ.

1. Write down explicitly the action (4), i.e. without referring to σ^{α}, but to τ and σ instead.
2. What is the geometric interpretation of this action?
3. Show that the Polyakov action

$$
\begin{equation*}
S_{P}=-\frac{T}{2} \int d^{2} \sigma \sqrt{-h}\left(h^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \eta_{\mu \nu}\right), \tag{5}
\end{equation*}
$$

is equivalent to the Nambu-Goto action.

