Exercises in Superstring Theory

Prof. Dr. Albrecht Klemm

Sheets \& Organiztion: César Fierro-Cota
Hand in: 23.10.2018
http://www.th.physik.uni-bonn.de/klemm/strings1819/

-Homework-

1 Symmetries of the string and their implications 9 Points

1.1 Global symmetries 3 Points

Show that the Polyakov action is invariant under Poincaré transformations

$$
\begin{equation*}
X^{\mu} \rightarrow \Lambda^{\mu}{ }_{\nu} X^{\nu}+b^{\mu} \tag{1}
\end{equation*}
$$

Evaluate the corresponding conserved currents using the Noether procedure which we briefly recall. If the Lagrangian is invariant under an infinitesimal transformation of the fields given by

$$
\begin{equation*}
\phi^{a} \rightarrow \phi^{a}+\delta \phi^{a}, \quad \delta \phi^{a}=\epsilon^{i} f_{i}^{a}\left(\phi^{b}\right), \tag{2}
\end{equation*}
$$

where ϵ^{i} is infinitesimal and f_{i}^{a} denotes a function of the fields ϕ^{a}, then the current j_{i}^{α} defined by

$$
\begin{equation*}
\epsilon^{i} j_{i}^{\alpha}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\alpha} \phi^{a}\right)} \delta \phi^{a}, \tag{3}
\end{equation*}
$$

is conserved. Note that i might be a multi-index. The infinitesimal variations for Poincaré transformations are respectively given by

$$
\begin{equation*}
X^{\mu} \rightarrow X^{\mu}+\epsilon^{\mu}, \quad X_{\mu} \rightarrow X_{\mu} \epsilon a_{\mu \nu} X^{\nu}, \quad a_{\mu \nu}=-a_{\nu \mu} \tag{4}
\end{equation*}
$$

Evaluate the currents using

$$
h_{\alpha \beta}=\left(\begin{array}{cc}
-1 & 0 \tag{5}\\
0 & 1
\end{array}\right) .
$$

See also the exercise (1.2) and equation (11).

1.2 Local symmetries 6 Points

1. Show that the action is invariant under worldsheet reparametrizations

$$
\begin{equation*}
\sigma^{\alpha} \rightarrow \sigma^{\prime \alpha}\left(\sigma^{\beta}\right) \tag{6}
\end{equation*}
$$

2. Show that the action is invariant under Weyl transformations

$$
\begin{equation*}
h_{\alpha \beta} \rightarrow e^{\phi\left(\sigma^{\alpha}\right)} h_{\alpha \beta} . \tag{7}
\end{equation*}
$$

3. It can be shown (see. e.g. Martin Schottenloher - A mathematical introduction to conformal field theory) that locally there exists parametrizations such that the metric is of the form

$$
h_{\alpha \beta}=\left(\begin{array}{cc}
-1 & 0 \tag{8}\\
0 & 1
\end{array}\right) .
$$

Why is it in general not possible to choose this metric globally?

2 Two-dimensional gravity 4 Points

Show that the energy momentum tensor in two dimension vanishes identically due to Einstein's equation. Hint: The only non-vanishing component of the Riemann tensor in two dimensions is

$$
\begin{equation*}
R_{0101}=-R_{0110}=-R_{1001}=R_{1010} \tag{9}
\end{equation*}
$$

3 The equations of motion 11 Points

In the following, we consider the range of worldsheet coordinates given by

$$
\begin{equation*}
\tau \in \mathbb{R}, \quad \sigma \in[0, \pi] \tag{10}
\end{equation*}
$$

1. Show that for the gauge fixed metric (8) the action takes the simple form

$$
\begin{equation*}
S=\frac{T}{2} \int d^{2} \sigma\left(\dot{X}^{2}-X^{\prime 2}\right) . \tag{11}
\end{equation*}
$$

Here we have denoted by \dot{X} and X^{\prime} the derivatives with respect to τ and σ.
2. Derive the equations of motion. In addition, show that there is a boundary term

$$
\begin{equation*}
-T \int \tau^{\prime}\left(\left.X^{\prime}{ }_{\mu} \delta X^{\mu}\right|_{\sigma=\pi}-\left.X^{\prime}{ }_{\mu} \delta X^{\mu}\right|_{\sigma=0}\right) \tag{12}
\end{equation*}
$$

3. Show that there are three possibilities in order to make the boundary term vanish:
a) $X^{\mu}(\sigma, \tau)=X^{\mu}(\sigma+\pi, \tau)$.
b) $X^{\prime}{ }_{\mu}(\sigma, \tau)=0, \quad \sigma=0, \pi$.
c) $\left.X^{\mu}\right|_{\sigma=0}=X_{0}^{\mu},\left.\quad X^{\mu}\right|_{\sigma=\pi}=X_{\pi}^{\mu}$.

Comment on the physical interpretations of the three boundary conditions. Why is the last one "strange"?
The general solution to the equations of motion takes the form

$$
\begin{equation*}
X^{\mu}(\sigma, \tau)=f(\sigma) g(\tau) \tag{13}
\end{equation*}
$$

4. Show that for closed strings

$$
\begin{equation*}
\frac{\partial^{2} f(\sigma)}{\partial \sigma^{2}}=c f(\sigma), \quad \frac{\partial^{2} g(\tau)}{\partial \tau^{2}}=c g(\tau), \quad c=-4 m^{2}, \quad m \in \mathbb{Z} \tag{14}
\end{equation*}
$$

5. Conclude that the general solution for closed strings takes the form

$$
\begin{equation*}
X^{\mu}(\sigma, \tau)=X_{R}^{\mu}(\tau-\sigma)+X_{L}^{\mu}(\tau+\sigma) \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
X_{R}^{\mu} & =\frac{1}{2} x^{\mu}+\frac{1}{2} l_{s}^{2} p^{\mu}(\tau-\sigma)+\frac{i}{2} l_{s} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-2 i n(\tau-\sigma)}, \\
X_{L}^{\mu} & =\frac{1}{2} x^{\mu}+\frac{1}{2} l_{s}^{2} p^{\mu}(\tau+\sigma)+\frac{i}{2} l_{s} \sum_{n \neq 0} \frac{1}{n} \tilde{\alpha}_{n}^{\mu} e^{-2 i n(\tau+\sigma)} . \tag{16}
\end{align*}
$$

Here n runs over all non-zero integers. Which conditions have to be imposed on $\alpha_{n}^{\mu}, \tilde{\alpha}_{n}^{\mu}$ in order to make X^{μ} real?

