Exercises in Superstring Theory

Prof. Dr. Albrecht Klemm
Sheets \& Organiztion: César Fierro-Cota

Hand in: 06.11.2018
http://www.th.physik.uni-bonn.de/klemm/strings1819/
Announcement: Due to the holiday 'Allerheiligen', the Group 1 tutorial session will be held on Wednseday 15:00 \leftrightarrow 17:00 in the Besprechungsraum (BCTP) during this week.

1 A first glimpse at the quantization of the bosonic string (5 Points)

1.1 New coordinates

We consider again the following range of worldsheet coordinates

$$
\begin{equation*}
\tau \in[-\infty, \infty], \quad \sigma \in[0, \pi] . \tag{1}
\end{equation*}
$$

First we do a Wick rotation, sending

$$
\begin{equation*}
\tau \rightarrow-i \tau \tag{2}
\end{equation*}
$$

By this the metric on the worldsheet becomes Euclidean. Show that by introducing

$$
\begin{equation*}
\zeta=2(\tau-i \sigma), \quad \bar{\zeta}=2(\tau+i \sigma), \quad z=e^{\zeta}, \quad \bar{z}=e^{\bar{\zeta}}, \tag{3}
\end{equation*}
$$

the expansion of the X worldsheet field reads (we just consider one component and therefore omit the spacetime indices)

$$
\begin{equation*}
X(z, \bar{z})=x-i \frac{l_{s}^{2}}{4} p \log \left(|z|^{2}\right)+i \frac{l_{s}}{2} \sum_{n \neq 0} \frac{1}{n}\left(\alpha_{n} z^{-n}+\bar{\alpha}_{n} \bar{z}^{-n}\right) . \tag{4}
\end{equation*}
$$

1.2 Normal ordering ambiguities

We canonically quantize the string by mapping the Fourier modes to operators

$$
\begin{equation*}
\alpha_{n} \mapsto \hat{\alpha}_{n}, \quad \bar{\alpha}_{n} \mapsto \hat{\bar{\alpha}}_{n}, \tag{5}
\end{equation*}
$$

such that the Poisson bracket is mapped to the commutator

$$
\begin{equation*}
\{\cdot, \cdot\} \mapsto i[\cdot, \cdot] . \tag{6}
\end{equation*}
$$

Therefore one has to deal with normal ordering ambiguities. The normal ordering is defined by ${ }^{1}$

$$
\begin{align*}
&: x p:=: p x:=x p, \quad: \alpha_{m} \alpha_{-n}:=: \alpha_{-n} \alpha_{m}:=\alpha_{-n} \alpha_{m} \\
&: \bar{\alpha}_{m} \bar{\alpha}_{-n}:=: \bar{\alpha}_{-n} \bar{\alpha}_{m}:=\bar{\alpha}_{-n} \bar{\alpha}_{m}, \quad m, n \in \mathbb{Z}_{>0} . \tag{7}
\end{align*}
$$

Show that

$$
\begin{equation*}
X(z, \bar{z}) X(w, \bar{w})=: X(z, \bar{z}) X(w, \bar{w}):-\frac{l_{s}^{2}}{4} \log |z-w|^{2} \tag{8}
\end{equation*}
$$

[^0]
2 The Quantum Virasoro Algebra (10 Points)

To fully promote the Virasoro generators to Quantum operators, we need to take into account the normal ordering : \cdots : as introduced in (7)

$$
\begin{equation*}
\text { Classical: } L_{n}=\frac{1}{2} \sum_{n \in \mathbb{Z}} \alpha_{m-n} \alpha_{n} \mapsto \text { Quantum: } \hat{L}_{n}=\frac{1}{2} \sum_{n \in \mathbb{Z}}: \hat{\alpha}_{m-n} \hat{\alpha}_{n}: . \tag{9}
\end{equation*}
$$

From now on we drop the hats. Recall that we also follow the replacement (6) and the Fourier modes follow now the following commutation relations

$$
\begin{equation*}
\left[x^{\mu}, p^{\nu}\right]=i \eta^{\mu \nu}, \quad\left[\alpha_{m}^{\mu}, \alpha_{n}^{\nu}\right]=\left[\bar{\alpha}_{m}^{\mu}, \bar{\alpha}_{n}^{\nu}\right]=m \delta_{m+n} \eta^{\mu \nu}, \quad\left[\alpha_{m}^{\mu}, \bar{\alpha}_{n}^{\nu}\right]=0 \tag{10}
\end{equation*}
$$

1. Verify that $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}$ for $m+n \neq 0$.
2. Show that $\left[L_{m}, L_{n}\right]-(m-n) L_{m+n} \neq 0$ for $m+n=0$.

From this result, we note that normal ordering effects appear when $m+n=0$. This modification in the Quantum Virasoro Algebra can be understood as a central extension of the classical Virasoro algebra. A central extension $\hat{\mathfrak{g}} \simeq \mathfrak{g} \oplus \mathrm{c} \mathbb{C}$ of a Lie algebra \mathfrak{g} by c satisfies

- $[X, Y]_{\hat{\mathfrak{g}}}=[X, Y]_{\mathfrak{g}}+\mathrm{c} P(X, Y), \quad X, Y \in \mathfrak{g}$,
- $[X, \mathrm{c}]_{\hat{\mathfrak{g}}}=0$,
- $[\mathrm{c}, \mathrm{c}]_{\hat{\mathfrak{g}}}=0$,
i.e. c belongs to the center of $\hat{\mathfrak{g}}$. Here $P: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$ is bilinear and antisymmetric. Recall $\left[L_{m}, L_{n}\right]$ for $m+n=0$, any ambiguity here arising due to normal ordering would only involve a complex number, therefore we are guaranteed to have

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+A(m) \delta_{m+n} \tag{11}
\end{equation*}
$$

In other words the central extension term is $\mathrm{c} P\left(L_{m}, L_{n}\right)=A(m) \delta_{m+n}$.
3. Show that

$$
\begin{equation*}
A(m)=\frac{1}{12} D\left(m^{3}-m\right) \tag{12}
\end{equation*}
$$

Hint: First obtain that $A(-m)=-A(m)$. Then by using the Jacobi-identity derive $A(m)=$ $c_{1} m+c_{3} m^{3}$. Determine c_{1} and c_{3} by evaluating $\left[L_{2}, L_{-2}\right]$ on the vacuum state.

3 Lorentz symmetry of the quantum string (10 Points)

On the first sheet you found the currents $J^{\mu \nu}$ associated to Lorentz symmetry. The conserved charge

$$
\begin{equation*}
\mathcal{J}^{\mu \nu}=\int d \sigma J^{\mu \nu} \tag{13}
\end{equation*}
$$

becomes a (normal-ordered) operator in the quantum theory. Show that

$$
\begin{equation*}
\left[L_{m}, \mathcal{J}^{\mu \nu}\right]=0 \tag{14}
\end{equation*}
$$

What does this imply for the spectrum concerning representations of the Lorentz group?

[^0]: ${ }^{1}$ In the following we omit the hat for the operators.

