Exercises in Superstring Theory

Prof. Dr. Albrecht Klemm
Sheets \& Organiztion: César Fierro-Cota

Hand in: 27.11.2018
http://www.th.physik.uni-bonn.de/klemm/strings1819/

1 Operator Product Expansions

In a 2 d conformal invariant theory, there are two non-vanishing components of the energy-momentum tensor: the chiral part $T(z)$ and the anti-chiral part $\bar{T}(\bar{z})$. They give rise to an infinite number of conserved currents from which the associated conserved charges generating infinitesimal conformal transformations $z \rightarrow z+\epsilon(z), \epsilon(z) \ll 1$, are written as

$$
\begin{equation*}
Q_{\epsilon}=\oint_{C_{0}} \frac{d z}{2 \pi i} \epsilon(z) T(z) . \tag{1.1}
\end{equation*}
$$

Any field $\phi(z)$ on the complex plane has a mode expansion of the following form

$$
\begin{equation*}
\phi(z)=\sum_{n \in \mathbb{Z}} \phi_{n} z^{-n-h} \quad \text { with } \quad \phi_{n}=\oint_{C_{0}} \frac{d z}{2 \pi i} \phi(z) z^{n+h-1}, \tag{1.2}
\end{equation*}
$$

where integration is counterclockwise around the origin,

1. For two generic operators $A(z)$ and $B(z)$ with

$$
\begin{equation*}
A=\oint_{C_{0}} \frac{d z}{2 \pi i} A(z), \quad B=\oint_{C_{0}} \frac{d z}{2 \pi i} B(z) \tag{1.3}
\end{equation*}
$$

show that radial ordering \mathcal{R} implies that

$$
\begin{equation*}
\oint_{C_{0}} \frac{d z}{2 \pi i}[A(z), B(w)]=\oint_{C_{w}} \frac{d z}{2 \pi i} \mathcal{R}(A(z) B(w)) . \tag{1.4}
\end{equation*}
$$

In particular, this leads to the important relation

$$
\begin{equation*}
[A, B]=\oint_{C_{0}} \frac{d w}{2 \pi i} \oint_{C_{w}} \frac{d z}{2 \pi i} \mathcal{R}(A(z) B(w)) \tag{1.5}
\end{equation*}
$$

2. The variation (2.2) of exercise sheet 6 is encoded into the commutator $\delta_{\epsilon} \phi(w)=-\left[Q_{\epsilon}, \phi(w)\right]$. Use the result from item 1. and the Cauchy-Riemann formula given by

$$
\begin{equation*}
\oint_{C_{w}} \frac{d z}{2 \pi i} \frac{f(z)}{(z-w)^{n}}=\frac{1}{(n-1)!} f^{(n-1)}(w) \tag{1.6}
\end{equation*}
$$

to show that the (\mathcal{R}-ordered) operator product expansion $T(z) \phi(w)$ is given by

$$
\begin{equation*}
T(z) \phi(w)=\frac{h \phi(w)}{(z-w)^{2}}+\frac{\partial_{w} \phi(w)}{z-w}+\text { reg. } \tag{1.7}
\end{equation*}
$$

where reg. stands for a holomorphic fct. of z regular at $z=w$, also called finite terms or non-singular terms.

Therefore, a primary field $\phi(z)$ of weight h is also defined as a field which has the operator product expansion (1.7) with the energy-momentum tensor.
Consider the Laurent expansion of the energy-momentum tensor $T(z)$ given by

$$
\begin{equation*}
T(z)=\sum_{n \in \mathbb{Z}} z^{-n-2} L_{n}, \tag{1.8}
\end{equation*}
$$

where the L_{n} 's are the Virasoro generators given by

$$
\begin{equation*}
L_{n}=\oint \frac{d z}{2 \pi i} z^{n+1} T(z) . \tag{1.9}
\end{equation*}
$$

3. Show that the (radial-ordered) OPE of the energy-momentum tensor with itself,

$$
\begin{equation*}
T(z) T(w)=\frac{c / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial_{w} T(w)}{(z-w)}+\text { finite terms } \tag{1.10}
\end{equation*}
$$

is equivalent to the Virasoro algebra

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12} m\left(m^{2}-1\right) \delta_{m+n, 0} \tag{1.11}
\end{equation*}
$$

2 The propagator of the free boson

The first simple system is that of a free boson. In two dimensions the free boson has the following Euclidean action

$$
\begin{equation*}
S=\frac{g}{2} \int d^{2} x\left(\partial_{\alpha} \varphi \partial^{\alpha} \varphi+m^{2} \varphi^{2}\right), \tag{2.1}
\end{equation*}
$$

where g is a normalization parameter. The two-point function called propagator is given by

$$
\begin{equation*}
K(\boldsymbol{x}, \boldsymbol{y})=\langle\varphi(\boldsymbol{x}) \varphi(\boldsymbol{y})\rangle . \tag{2.2}
\end{equation*}
$$

The propagator obeys

$$
\begin{equation*}
g\left(-\partial_{x}^{2}+m^{2}\right) K(\boldsymbol{x}, \boldsymbol{y})=\delta(\boldsymbol{x}-\boldsymbol{y}) . \tag{2.3}
\end{equation*}
$$

1. Why is the propagator a function of only $r:=|\boldsymbol{x}-\boldsymbol{y}|$, i.e. $K(\boldsymbol{x}, \boldsymbol{y})=K(r)$? Show that for $m=0(2.3)$ is solved by

$$
\begin{equation*}
K(r)=-\frac{1}{2 \pi g} \log r+\text { const } . \tag{2.4}
\end{equation*}
$$

Hint: Proceed by integrating (2.3) over \boldsymbol{x} within a disc D of radius r centered around \boldsymbol{y}
In terms of complex coordinates this reads

$$
\begin{equation*}
\langle\varphi(z, \bar{z}) \varphi(w, \bar{w})\rangle=-\frac{1}{4 \pi g}(\log (z-w)+\log (\bar{z}-\bar{w}))+\text { const } . \tag{2.5}
\end{equation*}
$$

This leads to the following OPE

$$
\begin{equation*}
\partial_{z} \varphi(z, \bar{z}) \partial_{w} \varphi(w, \bar{w}) \sim-\frac{1}{4 \pi g} \frac{1}{(z-w)^{2}} . \tag{2.6}
\end{equation*}
$$

2. Given the energy momentum tensor

$$
\begin{equation*}
T(z)=-2 \pi g: \partial \varphi \partial \varphi: \tag{2.7}
\end{equation*}
$$

Show that the normal ordered operators $V_{\alpha}(z, \bar{z})=: e^{i \alpha \varphi(z, \bar{z})}$ are primary fields and determine their conformal weights h and \bar{h}.
Hint: Determine the OPE with the energy momentum tensor $T(z)$.

3 The Free Fermion

The action for a free Majorana fermion reads

$$
\begin{equation*}
S=\frac{1}{2} g \int d^{2} x \Psi^{\dagger} \gamma^{0} \gamma^{\mu} \partial_{\mu} \Psi \tag{3.1}
\end{equation*}
$$

where the Dirac matrices γ^{μ} satisfy the so-called Dirac algebra

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 \eta^{\mu \nu} \tag{3.2}
\end{equation*}
$$

if $\eta^{\mu \nu}=\operatorname{diag}(1,1)$ a representation thereof is

$$
\gamma^{0}=\left(\begin{array}{ll}
0 & 1 \tag{3.3}\\
1 & 0
\end{array}\right), \quad \gamma^{1}=i\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

1. Write the action in S in terms of the two-component spinor $\Psi=(\psi, \bar{\psi})$ and calculate the equations of motion for ψ and $\bar{\psi}$. What do they imply?
2. Next we want to calculate the correlator $\left\langle\Psi_{i}(\boldsymbol{x}), \Psi_{j}(\boldsymbol{y})\right\rangle$, where $i, j=1,2$ label the components of Ψ. To do so, express the kinetic terms in the derived action in 1 . in terms of a matrix $A_{i j}$ and write a differential equation for the Green's function.
3. We claim the the Green's function $G_{i j}(z, \bar{z})$ in complex coordinates for item 2 . is given by

$$
G=\frac{1}{2 \pi g}\left(\begin{array}{cc}
\frac{1}{z-w} & 0 \tag{3.4}\\
0 & \frac{1}{\bar{z}-\bar{w}}
\end{array}\right)
$$

Prove this by using the techniques you used in the bosonic case.

4 The Ghost System

Another simple system is the so-called ghost system with the following action

$$
\begin{equation*}
S=\frac{g}{2} \int d^{2} x b_{\mu \nu} \partial^{\mu} c^{\nu} \tag{4.1}
\end{equation*}
$$

where the field $b_{\mu \nu}$ is a traceless symmetric tensor, and both $b_{\mu \nu}$ and c^{μ} are anticommuting fields. The propagator of such system can be obtanied in a similar way as sketched in section 2 . It is given by

$$
\begin{equation*}
\langle b(z) c(w)\rangle=\frac{1}{\pi g} \frac{1}{z-w} . \tag{4.2}
\end{equation*}
$$

1. Determine the correlators $\langle b(z) \partial c(w)\rangle,\langle\partial b(z) c(w)\rangle$ and $\langle\partial b(z) \partial c(w)\rangle$.
2. The normal-ordered holomorphic energy-momentum tensor of the $b c$-system is given by

$$
\begin{equation*}
T(z)=\pi g:(2 \partial c b+c \partial b): \tag{4.3}
\end{equation*}
$$

Compute the OPEs $T(z) b(w)$ and $T(z) c(w)$ using Wick's Theorem. What are the conformal dimensions of the fields b and c ?
3. Compute the OPE of the energy-momentum tensor with itself and bring it to the form

$$
\begin{equation*}
T(z) T(w)=\frac{\mathrm{c} / 2}{(z-w)^{4}}+\frac{h T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{z-w}+\operatorname{ref} \tag{4.4}
\end{equation*}
$$

Read off the conformal weight h of the energy momentum tensor and the central charge c of the $b c$ system.

