Exercises in Superstring Theory

Prof. Dr. Albrecht Klemm
Sheets \& Organiztion: César Fierro-Cota

Hand in: 03.12.2018
http://www.th.physik.uni-bonn.de/klemm/strings1819/

1 Vertex operator

Recall the Vertex operator defined by

$$
\begin{equation*}
V_{\alpha}(z, \bar{z})=: e^{i \alpha \phi(z, \bar{z})}: \tag{1.1}
\end{equation*}
$$

where ϕ is a free bosonic field. Show that for two free fields one has

$$
\begin{equation*}
: e^{a \phi_{1}}:: e^{b \phi_{2}}:=: e^{a \phi_{1}+b \phi_{2}}: e^{a b\left\langle\phi_{1} \phi_{2}\right\rangle} \tag{1.2}
\end{equation*}
$$

Use this result to compute the OPE of two Vertex operator. Moreover, with such an OPE conclude that the 2-point function of two vertex operators is given by

$$
\left\langle V_{\alpha}(z, \bar{z}) V_{\beta}(w, \bar{w})\right\rangle= \begin{cases}|z-w|^{-\frac{\alpha^{2}}{2 \pi g}} & \text { if } \alpha=-\beta \tag{1.3}\\ 0 & \text { else }\end{cases}
$$

2 Physical meaning of the central charge

1. Show that an equivalent way to write the OPE (1.10) of exercise sheet 7 is

$$
\begin{equation*}
\delta_{\epsilon} T(z)=-\epsilon(z) \partial_{z} T(z)-2 \partial_{z} \epsilon(z) T(z)-\frac{\mathrm{c}}{12} \partial_{z}^{3} \epsilon(z) \tag{2.1}
\end{equation*}
$$

The finite version of (2.1) under $z \rightarrow w(z)$ is given by

$$
\begin{equation*}
T(z) \rightarrow T(w)=\left(\frac{d w}{d z}\right)^{-2}\left[T(z)-\frac{\mathrm{c}}{12}\{w, z\}\right] \tag{2.2}
\end{equation*}
$$

where $\{w, z\}$ is the Schwarzian derivative $\left(w^{\prime}=\partial_{z} w\right)$

$$
\begin{equation*}
\{w, z\}=\frac{w^{\prime \prime \prime}}{w^{\prime}}-\frac{3}{2}\left(\frac{w^{\prime \prime}}{w^{\prime}}\right)^{2} \tag{2.3}
\end{equation*}
$$

Compare (1.10) of exercise sheet $7,2.1$ and 2.2 with the corresponding expressions for a primary field $\phi(z)$ of weight h you encountered in exercise sheet 7

$$
\begin{gather*}
T(z) \phi(w)=\frac{h \phi(w)}{(z-w)^{2}}+\frac{\partial_{w} \phi(w)}{z-w}+\text { finite terms } \tag{2.4}\\
\delta_{\epsilon} \phi(z)=-\left[\epsilon(z) \partial_{z}+h \partial_{z} \epsilon(z)\right] \phi(z) \tag{2.5}\\
\phi(z) \rightarrow \phi(w)=\left(\frac{d w}{d z}\right)^{-h} \phi(z) \tag{2.6}
\end{gather*}
$$

From these you can clearly see that the energy-momentum tensor is NOT a primary field.
2. Show that $\{w, z\}=0$ for $w=\frac{a z+b}{c z+d}, a d-b c=11^{1}$ and conclude that the energy-momentum tensor is a quasi-primary field. What is its conformal dimension h in this case?

Recall the map of the worldsheet of a free closed string - the cylinder - parametrized by $\sigma \in[0, l)$ and $\tau \in(-\infty,+\infty)$ to the complex plane via (after Wick rotation $\tau \rightarrow-i \tau$)

$$
\begin{align*}
& z=e^{\frac{2 \pi}{l} w}=e^{\frac{2 \pi}{l}(\tau-i \sigma)} \\
& \bar{z}=e^{\frac{2 \pi}{l} \bar{w}}=e^{\frac{2 \pi}{l}(\tau+i \sigma)} \tag{2.7}
\end{align*}
$$

3. Show that the map from the cylinder to the plane gives

$$
\begin{equation*}
T_{c y l .}(w)=\left(\frac{2 \pi}{l}\right)^{2}\left(z^{2} T_{\text {plane }}(z)-\frac{\mathrm{c}}{24}\right) \tag{2.8}
\end{equation*}
$$

For the following discussion consider $\left\langle T_{\text {plane }}(z)\right\rangle=0$.
4. Compute the Casimir energy of the cylinder given by

$$
\begin{equation*}
E=\int_{0}^{l} d \sigma\left\langle T_{\tau \tau}\right\rangle=-\frac{1}{2 \pi} \int_{0}^{l} d \sigma\left(\left\langle T_{c y l}(w)\right\rangle+\left\langle\bar{T}_{c y l}(\bar{w})\right\rangle\right) . \tag{2.9}
\end{equation*}
$$

Generally speaking, for a 2 d CFT defined on a curved 2 d manifold Σ equipped with metric g, the expectation value of the trace of the energy-momentum tensor, instead of vanishing, is proportional to both the curvature R and the central charge c

$$
\begin{equation*}
\left\langle T_{\mu}^{\mu}(\boldsymbol{x})\right\rangle_{(\Sigma, g)}=\frac{\mathrm{c}}{24 \pi} R(\boldsymbol{x}) . \tag{2.10}
\end{equation*}
$$

This quantum breaking of scale invariance is called the trace anomaly.

[^0]
[^0]: ${ }^{1}$ The group $P S L(2, \mathbb{C})$ represents the globally defined conformal transformations acting on the conformal plane coordinates.

