Exercises in Superstring Theory

Prof. Dr. Albrecht Klemm
Sheets \& Organiztion: César Fierro-Cota

Hand in: 11.12.2018
http://www.th.physik.uni-bonn.de/klemm/strings1819/

1 The Kac determinant and singular vectors

A representation of the Virasoro algebra is said to be unitary if it contains no negative-norm states. Unitarity as well as the presence of singular vectors can be studied using the Kac determinant. The matrix of inner products between all basis states

$$
\begin{equation*}
L_{-k_{1}} L_{-k_{2}} \ldots L_{-k_{n}}|h\rangle \tag{1.1}
\end{equation*}
$$

of a given Verma module is called the Gram matrix M. Due to the orthogonality of descendant states at different levels the Gram matrix is of block diagonal form. We denote the block corresponding to states of level l by $M^{(l)}$. The determinant det $M^{(l)}$ is called the Kac determinant.

1. Calculate $M^{(l)}$ for $l=0,1,2$ as a function of h and c. Argue that for a unitary representation $h>0$.
2. Show that a unitary representation contains singular vectors at level two for

$$
\begin{equation*}
h=\frac{1}{16}(5-c \pm \sqrt{(1-c)(25-c)}) . \tag{1.2}
\end{equation*}
$$

3. Given $|h\rangle=\phi(0)|0\rangle$, the descendant field associated with the state $L_{-n}|h\rangle$ is given by

$$
\begin{equation*}
\phi^{(-n)}(w)=\frac{1}{2 \pi i} \oint_{\mathcal{C}_{w}} d z \frac{1}{(z-w)^{n-1}} T(z) \phi(w) \tag{1.3}
\end{equation*}
$$

Show that for a string $X=\phi_{1}\left(w_{1}\right) \ldots \phi_{N}\left(w_{N}\right)$ of primary fields with conformal dimensions h_{i},

$$
\begin{equation*}
\left\langle\phi^{(-n)}(w) X\right\rangle=\mathcal{L}_{-n}\langle\phi(x) X\rangle \tag{1.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{L}_{-n}=\sum_{i}\left\{\frac{(n-1) h_{i}}{\left(w_{i}-w\right)^{n}}-\frac{1}{\left(w_{i}-w\right)^{n-1}} \partial_{w_{i}}\right\} \tag{1.5}
\end{equation*}
$$

4. Assume that the Verma module generated by $|h\rangle=\phi(0)|0\rangle$ is unitary and contains a singular vector at level two. Show that the correlators involving $\phi(z)$ satisfy a differential equation. Use the general form of the three-point function $\left\langle\phi(z) \phi_{1}\left(z_{1}\right) \phi_{2}\left(z_{2}\right)\right\rangle$ to show that it vanishes unless

$$
\begin{equation*}
2(2 h+1)\left(h+2 h_{2}-h_{1}\right)=3\left(h-h_{1}+h_{2}\right)\left(h-h_{1}+h_{2}+1\right) \tag{1.6}
\end{equation*}
$$

