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1 Lorentz invariance and the LCQ
Here, you will compute the critical dimension of an open superstring theory in the light-
cone quantization (LCQ) by requiring a quantum anomaly in the Lorentz algebra to vanish.
In this section, we will be working the light-cone coordinates and the Greek
indices always denote −,+, i where i = 1, . . . , d − 2. The light-cone coordinates are
defined by

X± =
1√
2

(X0 ±Xd−1) with η−+ = η+− = −1 and ηij = δij. (1)

Let us start with the super-Virasoro constraint.

ψµ∂+X
µ = 0 and ∂+X

µ∂+Xµ +
i

2
ψµ∂+ψµ = 0, (2)

where ∂± = ∂
∂σ± with σ± = τ ± σ. Recall that, for open strings,

∂+X
µ =

1

2

∑
n

αµne
−inσ+

, (3)

∂+ψ
µ =

1√
2

∑
r

bµr e
−irσ+

. (4)

Choose the gauge
X+ = x+ + p+τ and ψ+ = 0. (5)

• Solve α−n and b−r from (2). You should find that

α−n =
1

2p+

d−2∑
i=1

(∑
m

: αin−mα
i
m : +

∑
r

(r − n

2
) : bin−rb

i
r :

)
− a

2p+
δn,

b−r =
1

p+

d−2∑
i=1

∑
s

αir−sb
i
s, (6)

where a is the normal ordering constant for the zero modes.

Let us the revisit the Lorentz algebra,

[Jµν , Jρσ] = i(ηµρJνσ + ηνσJµρ − ηνρJµσ − ηµσJνρ). (7)
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• Show that, in the light-cone coordinates, (7) gives

[J i−, J j−] = 0. (8)

The generator Jµν can be expressed through the modes αµ and bµ via

Jµν = lµν + Eµν +Kµν , (9)

where

lµν = xµpν − xνpµ, (10)

Eµν =
1

i

∑
n>0

1

n
(αµ−nα

ν
n − αν−nαµn), (11)

Kµν =
1

i

∑
r>0

1

r
(bµ−rb

ν
r − bν−rbµr ). (12)

• Write down the following relations: [p+a−m, a
i
n], [p+a−m, x

−], [p+a−m, b
i
n], [p+b−m, a

i
n],

[p+b−m, x
−], and [p+b−m, b

i
n].

• Compute [p+a−m, p
+b−r ], [p+a−m, p

+a−n ], and {p+b−r , p
+b−s } only for m + n 6= 0 and

r + s 6= 0.
Hint: [x−, 1/p+] = i/(p+)2.

You should obtain the following

[p+a−m, p
+a−n ] = (m− n)p+a−m+n + A(m)δm+n, (13)

{p+b−r , p
+b−s } = 2p+a−r+s +B(r)δr+s, (14)

with

A(m) =
d− 2

8
(m3 −m) + 2am, (15)

B(r) =
d− 2

2
(r2 − 1

4
) + 2a (16)

and
[p+a−m, p

+b−r ] = (
m

2
− r)p+b−m+r (17)

with

• Using the previous results to compute [lµν , bρp], [lµν , αρp], [Eµν , bρp], [Eµν , αρp], [Kµν , bρp],
and [Kµν , αρp].

• Compute all the commutators of lµν , Eµν , and Kµν .

• Show that J ij and Jkl satisfy the Lorentz algebra.

• Arrive at the following

[J i−, J j−] = − 1

(p+)2

∞∑
n=1

(
n
d− 10

8
+

1

n
(2a− d− 2

8
)

)
(αi−nα

j
n − α

j
−nα

i
n). (18)

Hence, one immediately sees that d = 10 and a = 1
2
leads to a vanishing anomaly in

the Lorentz algebra.
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2 The RNS formalism
In the lecture the LCQ formulation has been used for the description of Type II string the-
ories. Another complementary description of the latter is the so-called RNS formulation,
which is heavily discussed in String Theory Volume II by Polchinski. Such a formulation
will be useful in the future when discussing Vertex operators and string scattering ampli-
tudes.

Let H(z) be the holomorphic part of a scalar field with the following Operator Product
Expansion (OPE)

H(z)H(w) ∼ log(z − w) , (19)

Consider the Majorana-Weyl fermions

Ψ±a(z) =
1√
2

(
ψ2a+1(z)± iψ2a(z)

)
. (20)

Here a = 0 . . . d−2
2
, ψµ are the holomorphic anticommuting worldsheet Majorana spinor

fields. Due to previous section, we fix d = 10.

• Show the following OPEs

Ψ+a(z)Ψ−a(w) ∼ 1

z − w
,

Ψ+a(z)Ψ+a(w) ∼ 0 ,

Ψ−a(z)Ψ−a(w) ∼ 0 .

(21)

Notice that we obtain the same OPEs given above by considering the following vertex
operators e±iH(z). Their OPEs read

eiH(z)e−iH(w) ∼ 1

z − w
,

eiH(z)eiH(w) ∼ 0 ,

e−iH(z)e−iH(w) ∼ 0 .

(22)

Hence we find the equivalence of arbitrary local operators

Ψ+a(z) ' eiHa(z) , Ψ−a(z) ' e−iHa(z) . (23)

In order for these theories to describe the same CFTs, their energy-momentum tensor must
be equivalent.

• Show that the following OPEs hold

eiHa(z)e−iHa(−z) =
1

2z
+ i∂H(0) + 2zTH(0) +O(z2) ,

Ψ+a(z)Ψ−a(−z) =
1

2z
+ Ψ+aΨ−a(0) + 2zTΨ(0) +O(z2) .

(24)

Hence we make the following identification

: Ψ+aΨ−a(z) :' i∂Ha(z) , TΨ ' TH . (25)

The equivalence we find in (23) and (25) is known as bosonization. Recall the R ground
state |0〉R in the LCQ formulation.
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• Using the RNS formulation, argue that the vertex operator Θs = exp
(
i
∑

a saHa

)
can be identified with the highest weight states (those you encountered in LCQ) given
by

|s〉 = |s0, s1, s2, s3, s4〉 , with sa = ±1

2
. (26)

In the covariant quantization approach of the bosonic string theory, the ghosts system bc
has to be added into the Polyakov action after fixing the conformal gauge. Similarly for
the superstring we have to add the superconformal ghost system bc+ βγ. A bosonization
for the latter system can be made as well, which effectively adds a factor on the states
depending on another bosonic field φ(z) with OPE φ(z)φ(w) ∼ − log(z − w). Adding the
contribution of the ghosts, the R ground state vertex operators read

Vs = e−
φ
2 Θs . (27)

On the other hand, the fermionic parts of the tachyon and massless NS vertex operators
are respectively given by

V× = e−φ , V−1 = e−φe±iHa . (28)

• Recall the physical state condition, which states that physical states requires con-
formal weight h = 1. As a consistency check, compute the conformal weight of the
vertex operators Vs,V×, and V−1.
Hint: You might need the following energy momentum tensor for the bosonic field φ,

Tφ(z) = −1

2
: ∂φ(z)∂φ(z) : −∂2φ(z) . (29)

The NS sector works out much as in the bosonic string. The lowest state is |0; k〉NS, labeled
by the matter state and momentum coming from the asymptotic of the vertex operator
Vk = eik·X . In the R sector the lowest states are |u; k〉R = us |s; k〉R . where us is the
polarization, and the sum on s is implicit.

• Explain why the Ramond vacuum |u; k〉R is a spacetime spinor, while the Neveu-
Schwarz vacuum |0; k〉NS is a spacetime scalar.

• Consider the Dirac equation as follows

kµΓµ |u; k〉R = (k0Γ0 + k1Γ1) |u; k〉R = 0 , (30)

such that k2 = 0 , and show that it can be written as(
S0 −

1

2

)
|u; k〉R = 0 , S0 = Γ0,+Γ0,− − 1

2
, (31)

where Γ0,± = ±Γ0 + Γ1.

• Consider the decomposition of the original 25-component Majorana spinor subject
to the Dirac equation into spinor representations of SO(1, 1) × SO(8) as appearing
in the LCQ approach. Based on this decomposition, how many spinor component
does |u; k〉R have? Are they real or complex? Is |u; k〉R chiral, antichiral or neither
of them?
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