Exercises on Advanced Topics in String Theory

Prof. Dr. Albrecht Klemm, César Fierro-Cota, Rongvoram Nivesvivat

http://www.th.physik.uni-bonn.de/klemm/strings2_19/

SPECIAL HOMEWORK \#1

1 Lorentz invariance and the LCQ

Here, you will compute the critical dimension of an open superstring theory in the lightcone quantization (LCQ) by requiring a quantum anomaly in the Lorentz algebra to vanish. In this section, we will be working the light-cone coordinates and the Greek indices always denote,,$-+ i$ where $i=1, \ldots, d-2$. The light-cone coordinates are defined by

$$
\begin{equation*}
X^{ \pm}=\frac{1}{\sqrt{2}}\left(X^{0} \pm X^{d-1}\right) \quad \text { with } \quad \eta_{-+}=\eta_{+-}=-1 \quad \text { and } \quad \eta_{i j}=\delta_{i j} . \tag{1}
\end{equation*}
$$

Let us start with the super-Virasoro constraint.

$$
\begin{equation*}
\psi_{\mu} \partial_{+} X^{\mu}=0 \quad \text { and } \quad \partial_{+} X^{\mu} \partial_{+} X_{\mu}+\frac{i}{2} \psi^{\mu} \partial_{+} \psi_{\mu}=0 \tag{2}
\end{equation*}
$$

where $\partial_{ \pm}=\frac{\partial}{\partial \sigma^{ \pm}}$with $\sigma^{ \pm}=\tau \pm \sigma$. Recall that, for open strings,

$$
\begin{align*}
\partial_{+} X^{\mu} & =\frac{1}{2} \sum_{n} \alpha_{n}^{\mu} e^{-i n \sigma^{+}} \tag{3}\\
\partial_{+} \psi^{\mu} & =\frac{1}{\sqrt{2}} \sum_{r} b_{r}^{\mu} e^{-i r \sigma^{+}} . \tag{4}
\end{align*}
$$

Choose the gauge

$$
\begin{equation*}
X^{+}=x^{+}+p^{+} \tau \quad \text { and } \quad \psi^{+}=0 \tag{5}
\end{equation*}
$$

- Solve α_{n}^{-}and b_{r}^{-}from (2). You should find that

$$
\begin{align*}
\alpha_{n}^{-} & =\frac{1}{2 p^{+}} \sum_{i=1}^{d-2}\left(\sum_{m}: \alpha_{n-m}^{i} \alpha_{m}^{i}:+\sum_{r}\left(r-\frac{n}{2}\right): b_{n-r}^{i} b_{r}^{i}:\right)-\frac{a}{2 p^{+}} \delta_{n} \\
b_{r}^{-} & =\frac{1}{p^{+}} \sum_{i=1}^{d-2} \sum_{s} \alpha_{r-s}^{i} b_{s}^{i}, \tag{6}
\end{align*}
$$

where a is the normal ordering constant for the zero modes.
Let us the revisit the Lorentz algebra,

$$
\begin{equation*}
\left[J^{\mu \nu}, J^{\rho \sigma}\right]=i\left(\eta^{\mu \rho} J^{\nu \sigma}+\eta^{\nu \sigma} J^{\mu \rho}-\eta^{\nu \rho} J^{\mu \sigma}-\eta^{\mu \sigma} J^{\nu \rho}\right) \tag{7}
\end{equation*}
$$

- Show that, in the light-cone coordinates, (7) gives

$$
\begin{equation*}
\left[J^{i-}, J^{j-}\right]=0 \tag{8}
\end{equation*}
$$

The generator $J^{\mu \nu}$ can be expressed through the modes α^{μ} and b^{μ} via

$$
\begin{equation*}
J^{\mu \nu}=l^{\mu \nu}+E^{\mu \nu}+K^{\mu \nu} \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
l^{\mu \nu} & =x^{\mu} p^{\nu}-x^{\nu} p^{\mu} \tag{10}\\
E^{\mu \nu} & =\frac{1}{i} \sum_{n>0} \frac{1}{n}\left(\alpha_{-n}^{\mu} \alpha_{n}^{\nu}-\alpha_{-n}^{\nu} \alpha_{n}^{\mu}\right), \tag{11}\\
K^{\mu \nu} & =\frac{1}{i} \sum_{r>0} \frac{1}{r}\left(b_{-r}^{\mu} b_{r}^{\nu}-b_{-r}^{\nu} b_{r}^{\mu}\right) \tag{12}
\end{align*}
$$

- Write down the following relations: $\left[p^{+} a_{m}^{-}, a_{n}^{i}\right],\left[p^{+} a_{m}^{-}, x^{-}\right],\left[p^{+} a_{m}^{-}, b_{n}^{i}\right],\left[p^{+} b_{m}^{-}, a_{n}^{i}\right]$, $\left[p^{+} b_{m}^{-}, x^{-}\right]$, and $\left[p^{+} b_{m}^{-}, b_{n}^{i}\right]$.
- Compute $\left[p^{+} a_{m}^{-}, p^{+} b_{r}^{-}\right],\left[p^{+} a_{m}^{-}, p^{+} a_{n}^{-}\right]$, and $\left\{p^{+} b_{r}^{-}, p^{+} b_{s}^{-}\right\}$only for $m+n \neq 0$ and $r+s \neq 0$.
Hint: $\left[x^{-}, 1 / p^{+}\right]=i /\left(p^{+}\right)^{2}$.
You should obtain the following

$$
\begin{align*}
{\left[p^{+} a_{m}^{-}, p^{+} a_{n}^{-}\right] } & =(m-n) p^{+} a_{m+n}^{-}+A(m) \delta_{m+n} \tag{13}\\
\left\{p^{+} b_{r}^{-}, p^{+} b_{s}^{-}\right\} & =2 p^{+} a_{r+s}^{-}+B(r) \delta_{r+s} \tag{14}
\end{align*}
$$

with

$$
\begin{align*}
A(m) & =\frac{d-2}{8}\left(m^{3}-m\right)+2 a m \tag{15}\\
B(r) & =\frac{d-2}{2}\left(r^{2}-\frac{1}{4}\right)+2 a \tag{16}
\end{align*}
$$

and

$$
\begin{equation*}
\left[p^{+} a_{m}^{-}, p^{+} b_{r}^{-}\right]=\left(\frac{m}{2}-r\right) p^{+} b_{m+r}^{-} \tag{17}
\end{equation*}
$$

with

- Using the previous results to compute $\left[l^{\mu \nu}, b_{p}^{\rho}\right],\left[l^{\mu \nu}, \alpha_{p}^{\rho}\right],\left[E^{\mu \nu}, b_{p}^{\rho}\right],\left[E^{\mu \nu}, \alpha_{p}^{\rho}\right],\left[K^{\mu \nu}, b_{p}^{\rho}\right]$, and $\left[K^{\mu \nu}, \alpha_{p}^{\rho}\right]$.
- Compute all the commutators of $l^{\mu \nu}, E^{\mu \nu}$, and $K^{\mu \nu}$.
- Show that $J^{i j}$ and $J^{k l}$ satisfy the Lorentz algebra.
- Arrive at the following

$$
\begin{equation*}
\left[J^{i-}, J^{j-}\right]=-\frac{1}{\left(p^{+}\right)^{2}} \sum_{n=1}^{\infty}\left(n \frac{d-10}{8}+\frac{1}{n}\left(2 a-\frac{d-2}{8}\right)\right)\left(\alpha_{-n}^{i} \alpha_{n}^{j}-\alpha_{-n}^{j} \alpha_{n}^{i}\right) \tag{18}
\end{equation*}
$$

Hence, one immediately sees that $d=10$ and $a=\frac{1}{2}$ leads to a vanishing anomaly in the Lorentz algebra.

2 The RNS formalism

In the lecture the LCQ formulation has been used for the description of Type II string theories. Another complementary description of the latter is the so-called RNS formulation, which is heavily discussed in String Theory Volume II by Polchinski. Such a formulation will be useful in the future when discussing Vertex operators and string scattering amplitudes.

Let $H(z)$ be the holomorphic part of a scalar field with the following Operator Product Expansion (OPE)

$$
\begin{equation*}
H(z) H(w) \sim \log (z-w) \tag{19}
\end{equation*}
$$

Consider the Majorana-Weyl fermions

$$
\begin{equation*}
\Psi^{ \pm a}(z)=\frac{1}{\sqrt{2}}\left(\psi^{2 a+1}(z) \pm i \psi^{2 a}(z)\right) . \tag{20}
\end{equation*}
$$

Here $a=0 \ldots \frac{d-2}{2}, \psi^{\mu}$ are the holomorphic anticommuting worldsheet Majorana spinor fields. Due to previous section, we fix $d=10$.

- Show the following OPEs

$$
\begin{align*}
\Psi^{+a}(z) \Psi^{-a}(w) & \sim \frac{1}{z-w}, \\
\Psi^{+a}(z) \Psi^{+a}(w) & \sim 0 \tag{21}\\
\Psi^{-a}(z) \Psi^{-a}(w) & \sim 0
\end{align*}
$$

Notice that we obtain the same OPEs given above by considering the following vertex operators $e^{ \pm i H(z)}$. Their OPEs read

$$
\begin{align*}
e^{i H(z)} e^{-i H(w)} & \sim \frac{1}{z-w}, \\
e^{i H(z)} e^{i H(w)} & \sim 0 \tag{22}\\
e^{-i H(z)} e^{-i H(w)} & \sim 0
\end{align*}
$$

Hence we find the equivalence of arbitrary local operators

$$
\begin{equation*}
\Psi^{+a}(z) \simeq e^{i H_{a}(z)}, \quad \Psi^{-a}(z) \simeq e^{-i H_{a}(z)} . \tag{23}
\end{equation*}
$$

In order for these theories to describe the same CFTs, their energy-momentum tensor must be equivalent.

- Show that the following OPEs hold

$$
\begin{align*}
e^{i H_{a}(z)} e^{-i H_{a}(-z)} & =\frac{1}{2 z}+i \partial H(0)+2 z T^{H}(0)+\mathcal{O}\left(z^{2}\right), \tag{24}\\
\Psi^{+a}(z) \Psi^{-a}(-z) & =\frac{1}{2 z}+\Psi^{+a} \Psi^{-a}(0)+2 z T^{\Psi}(0)+\mathcal{O}\left(z^{2}\right) .
\end{align*}
$$

Hence we make the following identification

$$
\begin{equation*}
: \Psi^{+a} \Psi^{-a}(z): \simeq i \partial H_{a}(z), \quad T^{\Psi} \simeq T^{H} \tag{25}
\end{equation*}
$$

The equivalence we find in (23) and (25) is known as bosonization. Recall the R ground state $|0\rangle_{R}$ in the LCQ formulation.

- Using the RNS formulation, argue that the vertex operator $\Theta_{s}=\exp \left(i \sum_{a} s_{a} H_{a}\right)$ can be identified with the highest weight states (those you encountered in LCQ) given by

$$
\begin{equation*}
|\boldsymbol{s}\rangle=\left|s_{0}, s_{1}, s_{2}, s_{3}, s_{4}\right\rangle, \quad \text { with } \quad s_{a}= \pm \frac{1}{2} \tag{26}
\end{equation*}
$$

In the covariant quantization approach of the bosonic string theory, the ghosts system $b c$ has to be added into the Polyakov action after fixing the conformal gauge. Similarly for the superstring we have to add the superconformal ghost system $b c+\beta \gamma$. A bosonization for the latter system can be made as well, which effectively adds a factor on the states depending on another bosonic field $\phi(z)$ with $\operatorname{OPE} \phi(z) \phi(w) \sim-\log (z-w)$. Adding the contribution of the ghosts, the R ground state vertex operators read

$$
\begin{equation*}
\mathcal{V}_{s}=e^{-\frac{\phi}{2}} \Theta_{s} \tag{27}
\end{equation*}
$$

On the other hand, the fermionic parts of the tachyon and massless NS vertex operators are respectively given by

$$
\begin{equation*}
\mathcal{V}_{\times}=e^{-\phi}, \quad \mathcal{V}_{-1}=e^{-\phi} e^{ \pm i H_{a}} \tag{28}
\end{equation*}
$$

- Recall the physical state condition, which states that physical states requires conformal weight $h=1$. As a consistency check, compute the conformal weight of the vertex operators $\mathcal{V}_{s}, \mathcal{V}_{\times}$, and \mathcal{V}_{-1}.
Hint: You might need the following energy momentum tensor for the bosonic field ϕ,

$$
\begin{equation*}
T_{\phi}(z)=-\frac{1}{2}: \partial \phi(z) \partial \phi(z):-\partial^{2} \phi(z) \tag{29}
\end{equation*}
$$

The NS sector works out much as in the bosonic string. The lowest state is $|0 ; k\rangle_{N S}$, labeled by the matter state and momentum coming from the asymptotic of the vertex operator $V_{k}=e^{i k \cdot X}$. In the R sector the lowest states are $|u ; k\rangle_{R}=u_{s}|s ; k\rangle_{R}$. where u_{s} is the polarization, and the sum on s is implicit.

- Explain why the Ramond vacuum $|u ; k\rangle_{R}$ is a spacetime spinor, while the NeveuSchwarz vacuum $|0 ; k\rangle_{N S}$ is a spacetime scalar.
- Consider the Dirac equation as follows

$$
\begin{equation*}
k_{\mu} \Gamma^{\mu}|u ; k\rangle_{R}=\left(k_{0} \Gamma^{0}+k_{1} \Gamma^{1}\right)|u ; k\rangle_{R}=0, \tag{30}
\end{equation*}
$$

such that $k^{2}=0$, and show that it can be written as

$$
\begin{equation*}
\left(S_{0}-\frac{1}{2}\right)|u ; k\rangle_{R}=0, \quad S_{0}=\Gamma^{0,+} \Gamma^{0,-}-\frac{1}{2}, \tag{31}
\end{equation*}
$$

where $\Gamma^{0, \pm}= \pm \Gamma^{0}+\Gamma^{1}$.

- Consider the decomposition of the original 2^{5}-component Majorana spinor subject to the Dirac equation into spinor representations of $S O(1,1) \times S O(8)$ as appearing in the LCQ approach. Based on this decomposition, how many spinor component does $|u ; k\rangle_{R}$ have? Are they real or complex? Is $|u ; k\rangle_{R}$ chiral, antichiral or neither of them?

