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1 Type I Strings & O-planes
In this section we consider the open-closed duality for the case of unoriented superstrings,
i.e. Type I strings. We consider Type IIB string theory and the worldsheet-parity operator
acting on the worldsheet coordinates as follows

Ω : (σ, τ) 7→ (`− σ, τ) . (1)

As a starting point we compute the loop-vacuum amplitude of closed strings. Recall that for
Type II string theories we must insert the GSO projection operator PGSO when performing
the trace sum over the Hilbert space H of concern. In addition to that, for Type I strings,
we have to add the projection onto even states under Ω. Hence, the closed loop-vacuum
partition function for Type I strings reads

ZI = TrHcl

(1 + Ω

2
PGSOq

L0− c
24 q̄L̄0− c

24

)
. (2)

• Show that ZI separates in two parts as follows ZI = 1
2
ZT 2(τ, τ̄)+ 1

2
ZK(t). Here ZT 2 is

the one-loop partition function of the torus you already know from previous course.
Using the level matching condition take ZK into the trace factor appearing in (3),
with t := Imτ .

Figure 1: (a) Topology associated to ZK. (b) A closed string following a loop, such that it
sweeps a Klein bottle, reverses its orientation along the σ direction.

Note that Ω flips the orientation over the length direction of the worldsheet for the outgoing
states on the trace. We interpret this action as a change of topology for the worldsheet
associated to the one-loop partition function as depicted in Figure 1-(a). We denote such
a worldsheet as Σ(K), which in fact has topology of a Klein bottle. Taking the measure of
the Klein bottle, the corresponding vacuum diagram reads

K =

∫ ∞
0

dt

2t
T rHcl

(
ΩPGSOe

−4πt(L0− c
24

)
)
. (3)
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• Compute the action of Ω on the ground states of closed strings in Type IIB.

• Using previous item and level matching condition due to the first item, show that

K =
V10

(4πα′)5

∫ ∞
0

dt

2t

1

t5

(
θ4

3 − θ4
4 − θ4

2

2η12

)
(2it) . (4)

Here VD = 〈p|p〉. In the following we take a look into the analogous of loop-channel ↔
tree-chanel duality for the cylinder diagram corresponding to Σ(K).

Figure 2: Exchange of a closed strings between two O-planes. Note the crosscaps located
at the ends of the cylinder. A crosscap is a circle with diagonally opposite points identified.

• Take the necessary cuts, flips and/or gluings in order to take Σ(K) into a tree-
channel diagram form. You might get some aid for this task from Figure 6.16 in
Basic Concepts of String Theory by Blumenhagen, Lüst and Theisen. Your diagram
should correspond to the tube depicted in Figure 2. Moreover, parametrize the time
direction of such a tree diagram with l and relate the latter with the parameter t.

Annalogous to the annulus diagram for two parallel D-branes discussed in Exercise 5, we
interpret the diagram obtained in previous item, as a locus in target spacetime (two of
them) where strings become unoriented as they hit it (see crosscaps definition). Such an
object is called Orientifold plane or O-plane for shortness.

• Now, we invoke the loop-channel ↔ tree-chanel duality. Denote O9 the tree-channel
amplitude corresponding to the diagram in Figure 2. Using modular transformation
and the parametrization assigned with l, obtain O9 as an integral expression over l.

Taking the appropriate Fourier expansions of the modular objects within the integral in
O9, we find

O9 =
V10

(4πα′)5

∫ ∞
0

dl24(1NS − 1R)
(

16 +O(e−2πl)
)
. (5)

Note the volume factor appearing in (5) suggests the objects considered here are a space-
time filling ones, i.e. O9-planes. So far, everything is good-looking here. Similar as in
the discussion of D-branes closed strings exchange in Exercise 5, we could naively think
the O9-plane is charged under an RR-field. This means, an O9-plane couples electromag-
netically, with charge µO9, to a C10 form via the following action

S× = µO9

∫
M10

C10 . (6)

Here M10 is the 10-dimensional target space.
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• Explain what goes wrong when introducing the action S×. What kind of diver-
gence/inconsistency would you obtain when considering charged/uncharged O9 planes?

We must include another source different than (6) to remove possible inconsistencies when
regarding O9 planes. For that purpose we introduce a stack of N D9-branes. In the fol-
lowing we consider the loop-channel annulus amplitude for open strings stretched between
the stack of D9-branes. Such expression reads∫ ∞

0

dt

2t
TrHop

(
1 + Ω

2
PGSOe

−2πt(L0− c
24

)

)
=

1

2
A+

1

2
M . (7)

Here we separated the open string vacuum diagram in two parts:

(a) Without Ω insertion: A

(b) With Ω insertion: M

• Recall the Chan-Paton factors introduced in Exercise 6. Argue that the open string
states with Chan-Paton labels |n, k; i, j〉 add a factor N2 to A (previously computed
in Exercise 5) when taking the trace over Hop.

We are interested in the exchange of closed strings in the tree-channel. Therefore, we
perform the S transformation, by exchange of parameters using loop-channel↔ tree-chanel
duality, we find

A
∣∣∣
closed

= N2 V10

(4πα′)5

∫ ∞
0

dl2−6(1NS − 1R)
(

16 +O(e−2πl)
)
. (8)

Figure 3: (a) Topology associated toM. (b) An open string following a loop, such that it
sweeps a Möbius strip, reverses its orientation along the σ direction

Lastly, we conisder the amplitude due to the the Ω insertion case, i.e.

M =

∫ ∞
0

dt

2t
TrHop

(
ΩPGSOe

−2πt(L0− c
24

)
)
. (9)

Similarly as the Klein bottle for the closed strings, the Ω operator flips the orientation for
the open string outgoing states. This effectively turns the annulus diagram into a Möbius
strip, which we denote by Σ(M).

• Recall 2.2) in Exercise 6. Argue that the Chan-Paton factors will add a factor∑
〈i′, j′|Ω |i, j〉 = ±N intoM when taking the trace in Hop.
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The complete computation ofM is straightforward, but a bit more tedious. Once again,
we are interested in the D9 closed strings exchange tree diagram. For this, we might use
the loop-channel ↔ tree-chanel duality once more. For the latter purpose we need an
intermediate step for making a triangulation of Σ(M) into a tree diagram. At the end of
the day the duality works by performing a modular transformation under the appropriate
identification of parameters. We will skip the details of the computationM ↔M

∣∣
closed

,
as this resembles the same one we did for K ↔ O9. We take the final result as

M
∣∣∣
closed

= ±N V10

(4πα′)5

∫ ∞
0

dl(1NS − 1R)
(

16 +O(e−2πl)
)
. (10)

• Consider the total sum O9 +A
∣∣
closed

+M
∣∣
closed

. How does such a sum factorises? If
we isolate the RR contributions in the sum, how can we make such a divergence to
vanish? Lastly, explain what would be the implications of this result when comparing
with 2.3) of Exercise 6.

2 The Graviton Propagator (Extra Points)
n the following, we do a field theory calculation to work out the amplitude for the exchange
of the graviton and dilaton between a pair of parallel Dp-branes. Consider the action for
a D-brane as follow

S = Sbulk + Sp , (11)

where
Sbulk =

1

2κ0

∫
MD

√
−Ge−2Φ

(
R+ 4∇µΦ∇µΦ

)
, (12)

and
Sp = −Tp

∫
Σp+1

dp+1ξe−Φ det
(
−X∗Gab −X∗Bab − 2πα′X∗Fab

)
. (13)

Here MD denotes the D-dimensional target background spacetime and is endowed with a
metric Gµν and R denotes its Ricci scalar. Φ denotes the dilaton field. Σp+1 is the world-
volume of the Dp-brane with local coordiantes ξa. The target space coordinates Xµ(ξa)
describe the embedding of the brane into space-time, i.e.

X : Σp+1 ↪→MD . (14)

The action (13) is called the Dirac-Born-Infeld action and is written in terms of the pull-
backs X∗Gab = ∂aX

µ∂bX
νGµν , similarly for the Bµν antisymmetric field and the field-

strength field Fµν .

1. Take the actions Sbulk and Sp into their Einstein frame form via the following redef-
inition

G̃µν(X) = e−
4̃Φ

D−2Gµν(X) , Φ̃ = Φ− Φ0 . (15)

2. Linearise SEbulk and SEp about a flat background by writing Gµν(X) = ηµν + hµν(X),
and expanding up to second order in hµν .
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3. Work out the propagators in momentum space for the graviton ∆G(k) and the dilation
∆Φ(k) . The result should read

∆G(k) = −2iκ2

k2

(
ηµρηνσ + ηµσηνρ −

2

D − 2
ηµνηρσ

)
,

∆Φ(k) = −iκ
2(D − 2)

4k2
.

(16)

5


