Exercises on Advanced Topics in String Theory

Prof. Dr. Albrecht Klemm, César Fierro-Cota, Rongvoram Nivesvivat
http://www.th.physik.uni-bonn.de/klemm/strings2_19/
SPECIAL HOMEWORK \#2

1 Type I Strings \& O-planes

In this section we consider the open-closed duality for the case of unoriented superstrings, i.e. Type I strings. We consider Type IIB string theory and the worldsheet-parity operator acting on the worldsheet coordinates as follows

$$
\begin{equation*}
\Omega:(\sigma, \tau) \mapsto(\ell-\sigma, \tau) \tag{1}
\end{equation*}
$$

As a starting point we compute the loop-vacuum amplitude of closed strings. Recall that for Type II string theories we must insert the GSO projection operator $P_{G S O}$ when performing the trace sum over the Hilbert space \mathcal{H} of concern. In addition to that, for Type I strings, we have to add the projection onto even states under Ω. Hence, the closed loop-vacuum partition function for Type I strings reads

$$
\begin{equation*}
Z_{I}=\operatorname{Tr}_{\mathcal{H}_{c l}}\left(\frac{1+\Omega}{2} P_{G S O} q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{c}{24}}\right) . \tag{2}
\end{equation*}
$$

- Show that Z_{I} separates in two parts as follows $Z_{I}=\frac{1}{2} Z_{T^{2}}(\tau, \bar{\tau})+\frac{1}{2} Z_{\mathcal{K}}(t)$. Here $Z_{T^{2}}$ is the one-loop partition function of the torus you already know from previous course. Using the level matching condition take $Z_{\mathcal{K}}$ into the trace factor appearing in (3), with $t:=\operatorname{Im} \tau$.

Figure 1: (a) Topology associated to $Z_{\mathcal{K}}$. (b) A closed string following a loop, such that it sweeps a Klein bottle, reverses its orientation along the σ direction.

Note that Ω flips the orientation over the length direction of the worldsheet for the outgoing states on the trace. We interpret this action as a change of topology for the worldsheet associated to the one-loop partition function as depicted in Figure 1-(a). We denote such a worldsheet as $\Sigma(\mathcal{K})$, which in fact has topology of a Klein bottle. Taking the measure of the Klein bottle, the corresponding vacuum diagram reads

$$
\begin{equation*}
\mathcal{K}=\int_{0}^{\infty} \frac{d t}{2 t} \operatorname{Tr}_{\mathcal{H}_{c l}}\left(\Omega P_{G S O} e^{-4 \pi t\left(L_{0}-\frac{c}{24}\right)}\right) \tag{3}
\end{equation*}
$$

- Compute the action of Ω on the ground states of closed strings in Type IIB.
- Using previous item and level matching condition due to the first item, show that

$$
\begin{equation*}
\mathcal{K}=\frac{V_{10}}{\left(4 \pi \alpha^{\prime}\right)^{5}} \int_{0}^{\infty} \frac{d t}{2 t} \frac{1}{t^{5}}\left(\frac{\theta_{3}^{4}-\theta_{4}^{4}-\theta_{2}^{4}}{2 \eta^{12}}\right)(2 i t) . \tag{4}
\end{equation*}
$$

Here $V_{D}=\langle p \mid p\rangle$. In the following we take a look into the analogous of loop-channel \leftrightarrow tree-chanel duality for the cylinder diagram corresponding to $\Sigma(\mathcal{K})$.

Figure 2: Exchange of a closed strings between two O-planes. Note the crosscaps located at the ends of the cylinder. A crosscap is a circle with diagonally opposite points identified.

- Take the necessary cuts, flips and/or gluings in order to take $\Sigma(\mathcal{K})$ into a treechannel diagram form. You might get some aid for this task from Figure 6.16 in Basic Concepts of String Theory by Blumenhagen, Lüst and Theisen. Your diagram should correspond to the tube depicted in Figure 2. Moreover, parametrize the time direction of such a tree diagram with l and relate the latter with the parameter t.

Annalogous to the annulus diagram for two parallel D-branes discussed in Exercise 5, we interpret the diagram obtained in previous item, as a locus in target spacetime (two of them) where strings become unoriented as they hit it (see crosscaps definition). Such an object is called Orientifold plane or O-plane for shortness.

- Now, we invoke the loop-channel \leftrightarrow tree-chanel duality. Denote \mathcal{O}_{9} the tree-channel amplitude corresponding to the diagram in Figure 2. Using modular transformation and the parametrization assigned with l, obtain \mathcal{O}_{9} as an integral expression over l.
Taking the appropriate Fourier expansions of the modular objects within the integral in \mathcal{O}_{9}, we find

$$
\begin{equation*}
\mathcal{O}_{9}=\frac{V_{10}}{\left(4 \pi \alpha^{\prime}\right)^{5}} \int_{0}^{\infty} d l 2^{4}\left(1_{N S}-1_{R}\right)\left(16+\mathcal{O}\left(e^{-2 \pi l}\right)\right) \tag{5}
\end{equation*}
$$

Note the volume factor appearing in (5) suggests the objects considered here are a spacetime filling ones, i.e. O9-planes. So far, everything is good-looking here. Similar as in the discussion of D-branes closed strings exchange in Exercise 5, we could naively think the O9-plane is charged under an RR-field. This means, an O9-plane couples electromagnetically, with charge $\mu_{O 9}$, to a C_{10} form via the following action

$$
\begin{equation*}
S_{\times}=\mu_{O 9} \int_{M_{10}} C_{10} \tag{6}
\end{equation*}
$$

Here M_{10} is the 10 -dimensional target space.

- Explain what goes wrong when introducing the action S_{\times}. What kind of divergence/inconsistency would you obtain when considering charged/uncharged O9 planes?

We must include another source different than (6) to remove possible inconsistencies when regarding O9 planes. For that purpose we introduce a stack of N D9-branes. In the following we consider the loop-channel annulus amplitude for open strings stretched between the stack of D9-branes. Such expression reads

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d t}{2 t} \operatorname{Tr}_{\mathcal{H}_{o p}}\left(\frac{1+\Omega}{2} P_{G S O} e^{-2 \pi t\left(L_{0}-\frac{c}{24}\right)}\right)=\frac{1}{2} \mathcal{A}+\frac{1}{2} \mathcal{M} \tag{7}
\end{equation*}
$$

Here we separated the open string vacuum diagram in two parts:
(a) Without Ω insertion: \mathcal{A}
(b) With Ω insertion: \mathcal{M}

- Recall the Chan-Paton factors introduced in Exercise 6. Argue that the open string states with Chan-Paton labels $|n, k ; i, j\rangle$ add a factor N^{2} to \mathcal{A} (previously computed in Exercise 5) when taking the trace over $\mathcal{H}_{o p}$.

We are interested in the exchange of closed strings in the tree-channel. Therefore, we perform the S transformation, by exchange of parameters using loop-channel \leftrightarrow tree-chanel duality, we find

$$
\begin{equation*}
\left.\mathcal{A}\right|_{\text {closed }}=N^{2} \frac{V_{10}}{\left(4 \pi \alpha^{\prime}\right)^{5}} \int_{0}^{\infty} d l 2^{-6}\left(1_{N S}-1_{R}\right)\left(16+\mathcal{O}\left(e^{-2 \pi l}\right)\right) . \tag{8}
\end{equation*}
$$

Figure 3: (a) Topology associated to \mathcal{M}. (b) An open string following a loop, such that it sweeps a Möbius strip, reverses its orientation along the σ direction

Lastly, we conisder the amplitude due to the the Ω insertion case, i.e.

$$
\begin{equation*}
\mathcal{M}=\int_{0}^{\infty} \frac{d t}{2 t} \operatorname{Tr}_{\mathcal{H}_{o p}}\left(\Omega P_{G S O} e^{-2 \pi t\left(L_{0}-\frac{c}{24}\right)}\right) \tag{9}
\end{equation*}
$$

Similarly as the Klein bottle for the closed strings, the Ω operator flips the orientation for the open string outgoing states. This effectively turns the annulus diagram into a Möbius strip, which we denote by $\Sigma(\mathcal{M})$.

- Recall 2.2) in Exercise 6. Argue that the Chan-Paton factors will add a factor $\sum\left\langle i^{\prime}, j^{\prime}\right| \Omega|i, j\rangle= \pm N$ into \mathcal{M} when taking the trace in $\mathcal{H}_{o p}$.

The complete computation of \mathcal{M} is straightforward, but a bit more tedious. Once again, we are interested in the D9 closed strings exchange tree diagram. For this, we might use the loop-channel \leftrightarrow tree-chanel duality once more. For the latter purpose we need an intermediate step for making a triangulation of $\Sigma(\mathcal{M})$ into a tree diagram. At the end of the day the duality works by performing a modular transformation under the appropriate identification of parameters. We will skip the details of the computation $\left.\mathcal{M} \leftrightarrow \mathcal{M}\right|_{\text {closed }}$, as this resembles the same one we did for $\mathcal{K} \leftrightarrow \mathcal{O}_{9}$. We take the final result as

$$
\begin{equation*}
\left.\mathcal{M}\right|_{\text {closed }}= \pm N \frac{V_{10}}{\left(4 \pi \alpha^{\prime}\right)^{5}} \int_{0}^{\infty} d l\left(1_{N S}-1_{R}\right)\left(16+\mathcal{O}\left(e^{-2 \pi l}\right)\right) \tag{10}
\end{equation*}
$$

- Consider the total sum $\mathcal{O}_{9}+\left.\mathcal{A}\right|_{\text {closed }}+\left.\mathcal{M}\right|_{\text {closed }}$. How does such a sum factorises? If we isolate the RR contributions in the sum, how can we make such a divergence to vanish? Lastly, explain what would be the implications of this result when comparing with 2.3) of Exercise 6.

2 The Graviton Propagator (Extra Points)

n the following, we do a field theory calculation to work out the amplitude for the exchange of the graviton and dilaton between a pair of parallel Dp-branes. Consider the action for a D-brane as follow

$$
\begin{equation*}
S=S_{\mathrm{bulk}}+S_{p} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{\text {bulk }}=\frac{1}{2 \kappa_{0}} \int_{M_{D}} \sqrt{-G} e^{-2 \Phi}\left(\mathcal{R}+4 \nabla_{\mu} \Phi \nabla^{\mu} \Phi\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{p}=-T_{p} \int_{\Sigma_{p+1}} d^{p+1} \xi e^{-\Phi} \operatorname{det}\left(-X^{*} G_{a b}-X^{*} B_{a b}-2 \pi \alpha^{\prime} X^{*} F_{a b}\right) . \tag{13}
\end{equation*}
$$

Here M_{D} denotes the D-dimensional target background spacetime and is endowed with a metric $G_{\mu \nu}$ and \mathcal{R} denotes its Ricci scalar. Φ denotes the dilaton field. Σ_{p+1} is the worldvolume of the Dp-brane with local coordiantes ξ^{a}. The target space coordinates $X^{\mu}\left(\xi^{a}\right)$ describe the embedding of the brane into space-time, i.e.

$$
\begin{equation*}
X: \Sigma_{p+1} \hookrightarrow M_{D} . \tag{14}
\end{equation*}
$$

The action (13) is called the Dirac-Born-Infeld action and is written in terms of the pullbacks $X^{*} G_{a b}=\partial_{a} X^{\mu} \partial_{b} X^{\nu} G_{\mu \nu}$, similarly for the $B_{\mu \nu}$ antisymmetric field and the fieldstrength field $F_{\mu \nu}$.

1. Take the actions $S_{\text {bulk }}$ and S_{p} into their Einstein frame form via the following redefinition

$$
\begin{equation*}
\tilde{G}_{\mu \nu}(X)=e^{-\frac{4 \Phi}{D-2}} G_{\mu \nu}(X), \quad \tilde{\Phi}=\Phi-\Phi_{0} . \tag{15}
\end{equation*}
$$

2. Linearise $S_{\text {bulk }}^{E}$ and S_{p}^{E} about a flat background by writing $G_{\mu \nu}(X)=\eta_{\mu \nu}+h_{\mu \nu}(X)$, and expanding up to second order in $h_{\mu \nu}$.
3. Work out the propagators in momentum space for the graviton $\Delta_{G}(k)$ and the dilation $\Delta_{\Phi}(k)$. The result should read

$$
\begin{align*}
\Delta_{G}(k) & =-\frac{2 i \kappa^{2}}{k^{2}}\left(\eta_{\mu \rho} \eta_{\nu \sigma}+\eta_{\mu \sigma} \eta_{\nu \rho}-\frac{2}{D-2} \eta_{\mu \nu} \eta_{\rho \sigma}\right) \tag{16}\\
\Delta_{\Phi}(k) & =-\frac{i \kappa^{2}(D-2)}{4 k^{2}}
\end{align*}
$$

