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Appetizer: Toroidal compactification of bosonic strings

Consider the simplest situation in which we compactify the 25th direction of closed bosonic string
theory (in 26 dimensions) on a circle with radius R.

X®(o+2m,7) ~ X®(0,7) + 27RL, (1)
where L is the winding number. Therefore, the string mass satisfy the relation m‘m; = m% + m%
with
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where M is the mass of X2°.
e Show that N, - Np=ML
e Show that the mass m'm; is invariant under under R - R/a’ and L <> M (T-duality).

e Write the down the massless spectrum of this theory. How many gauge bosons do we have?
This implies which gauge symmetry?

e Set R =+/a' and repeat the previous question (The gauge group is now SU(2) x SU(2)R).
e We consider the vertex operators of the SU(2)z x SU(2)r given by
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Compute the OPE of the above operators, using

0X?(2), exp(
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e Show the current algebra from the current modes of the operators in (3) is the Kac-Moody
algebra of SU(2) x SU(2) at level 1.
Using J(2) = ¥ Jpz "L



Hors d’oeuvres: Heterotic strings, modular invariance &
T-duality

Toroidal compactifications of string theory and the heterotic string contain a subsector that can
be described in terms of chiral and antichiral bosons with non-trivial zero-mode sector. In order
to understand such CFTs better, we now consider a CFT of N chiral bosons and M antichiral
bosons whose zero modes (pr,pr) take values in a lattice 'y as © RN*M e can endow this
lattice with a Lorentzian metric ||(pr,pr)||* = p% — p%. Moreover, we assume that this lattice is
integral, i.e. all scalar products between lattice points take integer values only. We call N + M
the rank of the lattice and N — M its signature. If ||z||? is even for all z € 'y 5s, we call the lattice
even (type II) otherwise odd (type I). A lattice is called unimodular or self-dual if its unit cell has
volume 1. In this problem we assume that I'y s is even and uni-modular.

e Calculate the partition function of this CFT Z(7,7) .

e Prove that Z(7,7) is modular invariant.
Hint: Use Poisson resummation.

e The orthogonal group O(N, M;R) acts on lattices of rank N + M and signature N — M.
Check that being even and unimodular is invariant under such a transformation and argue
that the partition function Z(7,7) does not change if we replace the lattice I'y as with
A-T'nar, where A e O(N,M;Z) = GL(N + M,Z)nO(N, M;R) is a Lorentz transformation
that is a lattice automorphism at the same time (T-duality).

e The Hasse-Minkowski classification of unimodular, indefinite lattices states that up to iso-
morphism there is exactly one lattice for a given rank, signature and type (see for example
J.-P Serre: A course in arithmetics, theorem V.2.2.5. and theorem V.2. Use this result to
argue, why the moduli space N, M of physically inequivalent lattices is given by (N, M > 0)

Mnar = MY /O(N, M;Z),

M ar = O(N, M;R)/(O(N;R) x O(M;R)). ©)

What is its dimension? Describe the moduli spaces M%l and My ;.

Dessert: Compactifications & CY geometries

Consider the manifold S ® R™ endowed with the metric
ds* = R*d0* + (dz" + Q' ;27 d0)?, (6)

where Q' ; is a constant anti-symmetric matrix, i.e. a generator of the rotation group SO(n) and
R is the radios of S?.

e Show that this metric has vanishing curvature, but nevertheless a vector, when parallel
transported around the circle, i.e. it is rotated by an element of SO(n).

Let M be a 2N-dimensional manifold with SU(N) holonomy. Such a manifold admits a spinor
field € that is covariantly constant, i.e. Vjse = 0. Here V= Oy — %wﬁBFAB, where w denotes the
spin connection, I'4p = %[FA, I'p] and the I'’s matrices fulfil a Clifford algebra.

e Show that .
[V, Vn]e= ZRMNPQFPQ =0. (7)

Here Ryrnpg denotes the Riemann tensor of the background M.
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e Using the following identity
PNpPQ - pNPQ L GNPPQ _ GNP (8)
where VP = %(FNTPFQ + ), together with the Bianchi identity, show that (7) implies

Ryl =0. (9)

Note that (9) implies that Rpg = 0. This means that a metric of SU(N') holonomy is
necessarily Ricci-flat.

From physics, one wants solutions to Einstein’s equation R, = 0, where R, is the Ricci tensor
derived from the metric g. On a Calabi-Yau manifold with a complex structure, we have a unique
solution given by the Ricci-flat metric in that complex structure. Let us look at the space of all
possible complex structure, and we can deform a solution by changing the complex structure. To
see these two type of solutions, let us look at the nearby metric g — g + h, and linearize R, in
this new metric.

e Assuming R,, =0 and V*h,, =0, perform this linearization to find he following equation
for h:
Ahyy + 2R, Phas = 0. (10)

Here A =V,V®.
Let E; = C/A; be an elliptic curve with complex structure 7, where A, =Zr & Z c C .

e Show that E; is a complex 1-dimensional Calabi-Yau manifold. Moreover, express the
complex structure 7 in terms of the periods of E.

e Let E. and E. be two elliptic curves with complex structure parameters 7 and 7’ respec-
tively. Show that E. and E,s are biholomorphic iff 7/ = 7 for some v € SLoZ.

e Construct a variety X c P? given by the locus P(z,y,2) = 0, where [z,, z] are the homo-

geneous coordinates of P2. By setting the condition ¢; (TX) 2 0 determine the form of P.
Argue that X is also holomorphically isomorphic to an elliptic curve F. for some complex
structure 7.



