Exercises on Advanced Topics in String Theory

Prof. Dr. Albrecht Klemm, César Fierro-Cota, Rongvoram Nivesvivat

http://www.th.physik.uni-bonn.de/klemm/strings2_19/ SPECIAL HOMEWORK #3

Appetizer: Toroidal compactification of bosonic strings

Consider the simplest situation in which we compactify the 25th direction of closed bosonic string theory (in 26 dimensions) on a circle with radius R.

$$X^{25}(\sigma + 2\pi, \tau) \sim X^{25}(\sigma, \tau) + 2\pi RL,$$
(1)

where L is the winding number. Therefore, the string mass satisfy the relation $m^i m_i = m_R^2 + m_L^2$ with

$$\alpha' m_L^2 = \frac{\alpha'}{2} \left(\frac{M}{R} + \frac{LR}{\alpha'}\right)^2 + 2(N_L - 1) \quad \text{and} \quad \alpha' m_R^2 = \frac{\alpha'}{2} \left(\frac{M}{R} - \frac{LR}{\alpha'}\right)^2 + 2(N_L - 1), \tag{2}$$

where M is the mass of X^{25} .

- Show that $N_L N_R = ML$
- Show that the mass $m^i m_i$ is invariant under under $R \to R/\alpha'$ and $L \leftrightarrow M$ (T-duality).
- Write the down the massless spectrum of this theory. How many gauge bosons do we have? This implies which gauge symmetry?
- Set $R = \sqrt{\alpha'}$ and repeat the previous question (The gauge group is now $SU(2)_L \times SU(2)_R$).
- We consider the vertex operators of the $SU(2)_L \times SU(2)_R$ given by

$$\partial X^{25}(z), \ \exp\left(\frac{\pm 2iX^{25}(z)}{\sqrt{\alpha'}}\right)$$
$$\bar{\partial} X^{25}(\bar{z}), \ \exp\left(\frac{\pm 2iX^{25}(\bar{z})}{\sqrt{\alpha'}}\right). \tag{3}$$

Compute the OPE of the above operators, using

$$\langle X^{25}(z)X^{25}(w)\rangle = -\frac{\alpha'}{2}\log(z-w).$$
 (4)

• Show the current algebra from the current modes of the operators in (3) is the Kac-Moody algebra of $SU(2) \times SU(2)$ at level 1. Using $J(z) = \sum J_n z^{-n-1}$.

Hors d'oeuvres: Heterotic strings, modular invariance & T-duality

Toroidal compactifications of string theory and the heterotic string contain a subsector that can be described in terms of chiral and antichiral bosons with non-trivial zero-mode sector. In order to understand such CFTs better, we now consider a CFT of N chiral bosons and M antichiral bosons whose zero modes (p_L, p_R) take values in a lattice $\Gamma_{N,M} \subset \mathbb{R}^{N+M}$. We can endow this lattice with a Lorentzian metric $||(p_L, p_R)||^2 = p_L^2 - p_R^2$. Moreover, we assume that this lattice is integral, i.e. all scalar products between lattice points take integer values only. We call N + Mthe rank of the lattice and N - M its signature. If $||x||^2$ is even for all $x \in \Gamma_{N,M}$, we call the lattice even (type II) otherwise odd (type I). A lattice is called unimodular or self-dual if its unit cell has volume 1. In this problem we assume that $\Gamma_{N,M}$ is even and uni-modular.

- Calculate the partition function of this CFT $Z(\tau, \bar{\tau})$.
- Prove that Z(τ, τ̄) is modular invariant. Hint: Use Poisson resummation.
- The orthogonal group $O(N, M; \mathbb{R})$ acts on lattices of rank N + M and signature N M. Check that being even and unimodular is invariant under such a transformation and argue that the partition function $Z(\tau, \bar{\tau})$ does not change if we replace the lattice $\Gamma_{N,M}$ with $\Lambda \cdot \Gamma_{N,M}$, where $\Lambda \in O(N, M; \mathbb{Z}) = GL(N + M, \mathbb{Z}) \cap O(N, M; \mathbb{R})$ is a Lorentz transformation that is a lattice automorphism at the same time (T-duality).
- The Hasse-Minkowski classification of unimodular, indefinite lattices states that up to isomorphism there is exactly one lattice for a given rank, signature and type (see for example J.-P Serre: A course in arithmetics, theorem V.2.2.5. and theorem V.2. Use this result to argue, why the moduli space \mathcal{N}, \mathcal{M} of physically inequivalent lattices is given by (N, M > 0)

$$\mathcal{M}_{N,M} = \mathcal{M}_{N,M}^{0} / O(N, M; \mathbb{Z}),$$

$$\mathcal{M}_{N,M}^{0} = O(N, M; \mathbb{R}) / (O(N; \mathbb{R}) \times O(M; \mathbb{R})).$$
(5)

What is its dimension? Describe the moduli spaces $\mathcal{M}_{1,1}^0$ and $\mathcal{M}_{1,1}$.

Dessert: Compactifications & CY geometries

Consider the manifold $S^1 \otimes \mathbb{R}^n$ endowed with the metric

$$ds^{2} = R^{2}d\theta^{2} + (dx^{i} + \Omega^{i}{}_{j}x^{j}d\theta)^{2}, \qquad (6)$$

where Ω_{j}^{i} is a constant anti-symmetric matrix, i.e. a generator of the rotation group SO(n) and R is the radios of S^{1} .

• Show that this metric has vanishing curvature, but nevertheless a vector, when parallel transported around the circle, i.e. it is rotated by an element of SO(n).

Let M be a 2N-dimensional manifold with SU(N) holonomy. Such a manifold admits a spinor field ϵ that is covariantly constant, i.e. $\nabla_M \epsilon = 0$. Here $\nabla_M = \partial_M - \frac{1}{4} \omega_M^{AB} \Gamma_{AB}$, where ω denotes the spin connection, $\Gamma_{AB} = \frac{1}{2} [\Gamma_A, \Gamma_B]$ and the Γ 's matrices fulfil a Clifford algebra.

• Show that

$$[\nabla_M, \nabla_N] \epsilon = \frac{1}{4} R_{MNPQ} \Gamma^{PQ} = 0.$$
⁽⁷⁾

Here R_{MNPQ} denotes the Riemann tensor of the background M.

• Using the following identity

$$\Gamma^N \Gamma^{PQ} = \Gamma^{NPQ} + G^{NP} \Gamma^Q - G^{NQ} \Gamma^P, \qquad (8)$$

where $\Gamma^{NPQ} = \frac{1}{3!} \left(\Gamma^N \Gamma^P \Gamma^Q \pm \cdots \right)$, together with the Bianchi identity, show that (7) implies

$$R_{MQ}\Gamma^Q \epsilon = 0. \tag{9}$$

Note that (9) implies that $R_{MQ} = 0$. This means that a metric of SU(N) holonomy is necessarily Ricci-flat.

From physics, one wants solutions to Einstein's equation $R_{\mu\nu} = 0$, where $R_{\mu\nu}$ is the Ricci tensor derived from the metric g. On a Calabi-Yau manifold with a complex structure, we have a unique solution given by the Ricci-flat metric in that complex structure. Let us look at the space of all possible complex structure, and we can deform a solution by changing the complex structure. To see these two type of solutions, let us look at the nearby metric $g \rightarrow g + h$, and linearize $R_{\mu\nu}$ in this new metric.

• Assuming $R_{\mu\nu} = 0$ and $\nabla^{\mu}h_{\mu\nu} = 0$, perform this linearization to find he following equation for h:

$$\Delta h_{\mu\nu} + 2R_{\mu}{}^{\alpha}{}_{\nu}{}^{\beta}h_{\alpha\beta} = 0.$$
⁽¹⁰⁾

Here $\Delta = \nabla_{\alpha} \nabla^{\alpha}$.

Let $E_{\tau} = \mathbb{C}/\Lambda_{\tau}$ be an elliptic curve with complex structure τ , where $\Lambda_{\tau} = \mathbb{Z}\tau \oplus \mathbb{Z} \subset \mathbb{C}$.

- Show that E_{τ} is a complex 1-dimensional Calabi-Yau manifold. Moreover, express the complex structure τ in terms of the periods of E_{τ} .
- Let E_{τ} and $E_{\tau'}$ be two elliptic curves with complex structure parameters τ and τ' respectively. Show that E_{τ} and $E_{\tau'}$ are biholomorphic iff $\tau' = \gamma \tau$ for some $\gamma \in SL_2\mathbb{Z}$.
- Construct a variety $X \in \mathbb{P}^2$ given by the locus P(x, y, z) = 0, where [x, y, z] are the homogeneous coordinates of \mathbb{P}^2 . By setting the condition $c_1(TX) \stackrel{!}{=} 0$ determine the form of P. Argue that X is also holomorphically isomorphic to an elliptic curve E_{τ} for some complex structure τ .