Exercises on Advanced Topics in String Theory

Prof. Dr. Albrecht Klemm, César Fierro-Cota, Rongvoram Nivesvivat
http://www.th.physik.uni-bonn.de/klemm/strings2_19/
SPECIAL HOMEWORK \#3

Appetizer: Toroidal compactification of bosonic strings

Consider the simplest situation in which we compactify the 25 th direction of closed bosonic string theory (in 26 dimensions) on a circle with radius R.

$$
\begin{equation*}
X^{25}(\sigma+2 \pi, \tau) \sim X^{25}(\sigma, \tau)+2 \pi R L \tag{1}
\end{equation*}
$$

where L is the winding number. Therefore, the string mass satisfy the relation $m^{i} m_{i}=m_{R}^{2}+m_{L}^{2}$ with

$$
\begin{equation*}
\alpha^{\prime} m_{L}^{2}=\frac{\alpha^{\prime}}{2}\left(\frac{M}{R}+\frac{L R}{\alpha^{\prime}}\right)^{2}+2\left(N_{L}-1\right) \quad \text { and } \quad \alpha^{\prime} m_{R}^{2}=\frac{\alpha^{\prime}}{2}\left(\frac{M}{R}-\frac{L R}{\alpha^{\prime}}\right)^{2}+2\left(N_{L}-1\right) \tag{2}
\end{equation*}
$$

where M is the mass of X^{25}.

- Show that $N_{L}-N_{R}=M L$
- Show that the mass $m^{i} m_{i}$ is invariant under under $R \rightarrow R / \alpha^{\prime}$ and $L \leftrightarrow M$ (T-duality).
- Write the down the massless spectrum of this theory. How many gauge bosons do we have? This implies which gauge symmetry?
- Set $R=\sqrt{\alpha^{\prime}}$ and repeat the previous question (The gauge group is now $\left.S U(2)_{L} \times S U(2)_{R}\right)$.
- We consider the vertex operators of the $S U(2)_{L} \times S U(2)_{R}$ given by

$$
\begin{align*}
& \partial X^{25}(z), \exp \left(\frac{ \pm 2 i X^{25}(z)}{\sqrt{\alpha^{\prime}}}\right) \\
& \bar{\partial} X^{25}(\bar{z}), \exp \left(\frac{ \pm 2 i X^{25}(\bar{z})}{\sqrt{\alpha^{\prime}}}\right) \tag{3}
\end{align*}
$$

Compute the OPE of the above operators, using

$$
\begin{equation*}
\left\langle X^{25}(z) X^{25}(w)\right\rangle=-\frac{\alpha^{\prime}}{2} \log (z-w) \tag{4}
\end{equation*}
$$

- Show the current algebra from the current modes of the operators in (3) is the Kac-Moody algebra of $S U(2) \times S U(2)$ at level 1 .
Using $J(z)=\sum J_{n} z^{-n-1}$.

Hors d'oeuvres: Heterotic strings, modular invariance \& T-duality

Toroidal compactifications of string theory and the heterotic string contain a subsector that can be described in terms of chiral and antichiral bosons with non-trivial zero-mode sector. In order to understand such CFTs better, we now consider a CFT of N chiral bosons and M antichiral bosons whose zero modes $\left(p_{L}, p_{R}\right)$ take values in a lattice $\Gamma_{N, M} \subset R^{N+M}$. We can endow this lattice with a Lorentzian metric $\left\|\left(p_{L}, p_{R}\right)\right\|^{2}=p_{L}^{2}-p_{R}^{2}$. Moreover, we assume that this lattice is integral, i.e. all scalar products between lattice points take integer values only. We call $N+M$ the rank of the lattice and $N-M$ its signature. If $\|x\|^{2}$ is even for all $x \in \Gamma_{N, M}$, we call the lattice even (type II) otherwise odd (type I). A lattice is called unimodular or self-dual if its unit cell has volume 1. In this problem we assume that $\Gamma_{N, M}$ is even and uni-modular.

- Calculate the partition function of this CFT $Z(\tau, \bar{\tau})$.
- Prove that $Z(\tau, \bar{\tau})$ is modular invariant.

Hint: Use Poisson resummation.

- The orthogonal group $O(N, M ; \mathbb{R})$ acts on lattices of rank $N+M$ and signature $N-M$. Check that being even and unimodular is invariant under such a transformation and argue that the partition function $Z(\tau, \bar{\tau})$ does not change if we replace the lattice $\Gamma_{N, M}$ with $\Lambda \cdot \Gamma_{N, M}$, where $\Lambda \in O(N, M ; \mathbb{Z})=G L(N+M, \mathbb{Z}) \cap O(N, M ; \mathbb{R})$ is a Lorentz transformation that is a lattice automorphism at the same time (T-duality).
- The Hasse-Minkowski classification of unimodular, indefinite lattices states that up to isomorphism there is exactly one lattice for a given rank, signature and type (see for example J.-P Serre: A course in arithmetics, theorem V.2.2.5. and theorem V.2. Use this result to argue, why the moduli space \mathcal{N}, \mathcal{M} of physically inequivalent lattices is given by ($N, M>0$)

$$
\begin{align*}
& \mathcal{M}_{N, M}=\mathcal{M}_{N, M}^{0} / O(N, M ; \mathbb{Z}) \\
& \mathcal{M}_{N, M}^{0}=O(N, M ; \mathbb{R}) /(O(N ; \mathbb{R}) \times O(M ; \mathbb{R})) \tag{5}
\end{align*}
$$

What is its dimension? Describe the moduli spaces $\mathcal{M}_{1,1}^{0}$ and $\mathcal{M}_{1,1}$.

Dessert: Compactifications \& CY geometries

Consider the manifold $S^{1} \otimes \mathbb{R}^{n}$ endowed with the metric

$$
\begin{equation*}
d s^{2}=R^{2} d \theta^{2}+\left(d x^{i}+\Omega^{i}{ }_{j} x^{j} d \theta\right)^{2}, \tag{6}
\end{equation*}
$$

where $\Omega^{i}{ }_{j}$ is a constant anti-symmetric matrix, i.e. a generator of the rotation group $S O(n)$ and R is the radios of S^{1}.

- Show that this metric has vanishing curvature, but nevertheless a vector, when parallel transported around the circle, i.e. it is rotated by an element of $S O(n)$.
Let M be a $2 N$-dimensional manifold with $S U(N)$ holonomy. Such a manifold admits a spinor field ϵ that is covariantly constant, i.e. $\nabla_{M} \epsilon=0$. Here $\nabla_{M}=\partial_{M}-\frac{1}{4} \omega_{M}^{A B} \Gamma_{A B}$, where ω denotes the spin connection, $\Gamma_{A B}=\frac{1}{2}\left[\Gamma_{A}, \Gamma_{B}\right]$ and the Γ^{\prime} 's matrices fulfil a Clifford algebra.
- Show that

$$
\begin{equation*}
\left[\nabla_{M}, \nabla_{N}\right] \epsilon=\frac{1}{4} R_{M N P Q} \Gamma^{P Q}=0 \tag{7}
\end{equation*}
$$

Here $R_{M N P Q}$ denotes the Riemann tensor of the background M.

- Using the following identity

$$
\begin{equation*}
\Gamma^{N} \Gamma^{P Q}=\Gamma^{N P Q}+G^{N P} \Gamma^{Q}-G^{N Q} \Gamma^{P}, \tag{8}
\end{equation*}
$$

where $\Gamma^{N P Q}=\frac{1}{3!}\left(\Gamma^{N} \Gamma^{P} \Gamma^{Q} \pm \cdots\right)$, together with the Bianchi identity, show that (7) implies

$$
\begin{equation*}
R_{M Q} \Gamma^{Q} \epsilon=0 . \tag{9}
\end{equation*}
$$

Note that (9) implies that $R_{M Q}=0$. This means that a metric of $S U(N)$ holonomy is necessarily Ricci-flat.

From physics, one wants solutions to Einstein's equation $R_{\mu \nu}=0$, where $R_{\mu \nu}$ is the Ricci tensor derived from the metric g. On a Calabi-Yau manifold with a complex structure, we have a unique solution given by the Ricci-flat metric in that complex structure. Let us look at the space of all possible complex structure, and we can deform a solution by changing the complex structure. To see these two type of solutions, let us look at the nearby metric $g \rightarrow g+h$, and linearize $R_{\mu \nu}$ in this new metric.

- Assuming $R_{\mu \nu}=0$ and $\nabla^{\mu} h_{\mu \nu}=0$, perform this linearization to find he following equation for h :

$$
\begin{equation*}
\Delta h_{\mu \nu}+2 R_{\mu}{ }^{\alpha}{ }_{\nu}{ }^{\beta} h_{\alpha \beta}=0 . \tag{10}
\end{equation*}
$$

Here $\Delta=\nabla_{\alpha} \nabla^{\alpha}$.
Let $E_{\tau}=\mathbb{C} / \Lambda_{\tau}$ be an elliptic curve with complex structure τ, where $\Lambda_{\tau}=\mathbb{Z} \tau \oplus \mathbb{Z} \subset \mathbb{C}$.

- Show that E_{τ} is a complex 1-dimensional Calabi-Yau manifold. Moreover, express the complex structure τ in terms of the periods of E_{τ}.
- Let E_{τ} and $E_{\tau^{\prime}}$ be two elliptic curves with complex structure parameters τ and τ^{\prime} respectively. Show that E_{τ} and $E_{\tau^{\prime}}$ are biholomorphic iff $\tau^{\prime}=\gamma \tau$ for some $\gamma \in S L_{2} \mathbb{Z}$.
- Construct a variety $X \subset \mathbb{P}^{2}$ given by the locus $P(x, y, z)=0$, where $[x, y, z]$ are the homogeneous coordinates of \mathbb{P}^{2}. By setting the condition $c_{1}(T X) \stackrel{!}{=} 0$ determine the form of P. Argue that X is also holomorphically isomorphic to an elliptic curve E_{τ} for some complex structure τ.

