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Appetizer: Toroidal compactification of bosonic strings
Consider the simplest situation in which we compactify the 25th direction of closed bosonic string
theory (in 26 dimensions) on a circle with radius R.

X25(σ + 2π, τ) ∼X25(σ, τ) + 2πRL, (1)

where L is the winding number. Therefore, the string mass satisfy the relation mimi =m2
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where M is the mass of X25.

• Show that NL −NR =ML

• Show that the mass mimi is invariant under under R → R/α′ and L↔M (T-duality).

• Write the down the massless spectrum of this theory. How many gauge bosons do we have?
This implies which gauge symmetry?

• Set R =
√
α′ and repeat the previous question (The gauge group is now SU(2)L×SU(2)R).

• We consider the vertex operators of the SU(2)L × SU(2)R given by

∂X25(z), exp(±2iX25(z)√
α′

)

∂̄X25(z̄), exp(±2iX25(z̄)√
α′

). (3)

Compute the OPE of the above operators, using

⟨X25(z)X25(w)⟩ = −α
′

2
log(z −w). (4)

• Show the current algebra from the current modes of the operators in (3) is the Kac-Moody
algebra of SU(2) × SU(2) at level 1.
Using J(z) = ∑Jnz−n−1.
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Hors d’oeuvres: Heterotic strings, modular invariance &
T-duality
Toroidal compactifications of string theory and the heterotic string contain a subsector that can
be described in terms of chiral and antichiral bosons with non-trivial zero-mode sector. In order
to understand such CFTs better, we now consider a CFT of N chiral bosons and M antichiral
bosons whose zero modes (pL, pR) take values in a lattice ΓN,M ⊂ RN+M . We can endow this
lattice with a Lorentzian metric ∣∣(pL, pR)∣∣2 = p2L − p2R. Moreover, we assume that this lattice is
integral, i.e. all scalar products between lattice points take integer values only. We call N +M
the rank of the lattice and N −M its signature. If ∣∣x∣∣2 is even for all x ∈ ΓN,M , we call the lattice
even (type II) otherwise odd (type I). A lattice is called unimodular or self-dual if its unit cell has
volume 1. In this problem we assume that ΓN,M is even and uni-modular.

• Calculate the partition function of this CFT Z(τ, τ̄) .

• Prove that Z(τ, τ̄) is modular invariant.
Hint: Use Poisson resummation.

• The orthogonal group O(N,M ;R) acts on lattices of rank N +M and signature N −M .
Check that being even and unimodular is invariant under such a transformation and argue
that the partition function Z(τ, τ̄) does not change if we replace the lattice ΓN,M with
Λ ⋅ΓN,M , where Λ ∈ O(N,M ;Z) = GL(N +M,Z) ∩O(N,M ;R) is a Lorentz transformation
that is a lattice automorphism at the same time (T-duality).

• The Hasse-Minkowski classification of unimodular, indefinite lattices states that up to iso-
morphism there is exactly one lattice for a given rank, signature and type (see for example
J.-P Serre: A course in arithmetics, theorem V.2.2.5. and theorem V.2. Use this result to
argue, why the moduli space N ,M of physically inequivalent lattices is given by (N,M > 0)

MN,M =M0
N,M/O(N,M ;Z) ,

M0
N,M = O(N,M ;R)/(O(N ;R) ×O(M ;R)) .

(5)

What is its dimension? Describe the moduli spacesM0
1,1 andM1,1 .

Dessert: Compactifications & CY geometries
Consider the manifold S1 ⊗Rn endowed with the metric

ds2 = R2dθ2 + (dxi +Ωi
jx
jdθ)2 , (6)

where Ωi
j is a constant anti-symmetric matrix, i.e. a generator of the rotation group SO(n) and

R is the radios of S1.

• Show that this metric has vanishing curvature, but nevertheless a vector, when parallel
transported around the circle, i.e. it is rotated by an element of SO(n).

Let M be a 2N -dimensional manifold with SU(N) holonomy. Such a manifold admits a spinor
field ε that is covariantly constant, i.e. ∇M ε = 0. Here ∇M = ∂M − 1

4ω
AB
M ΓAB, where ω denotes the

spin connection, ΓAB = 1
2[ΓA,ΓB] and the Γ’s matrices fulfil a Clifford algebra.

• Show that
[∇M ,∇N ]ε = 1

4
RMNPQΓPQ = 0 . (7)

Here RMNPQ denotes the Riemann tensor of the background M .
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• Using the following identity

ΓNΓPQ = ΓNPQ +GNPΓQ −GNQΓP , (8)

where ΓNPQ = 1
3!(ΓNΓPΓQ ±⋯), together with the Bianchi identity, show that (7) implies

RMQΓQε = 0 . (9)

Note that (9) implies that RMQ = 0. This means that a metric of SU(N) holonomy is
necessarily Ricci-flat.

From physics, one wants solutions to Einstein’s equation Rµν = 0, where Rµν is the Ricci tensor
derived from the metric g. On a Calabi-Yau manifold with a complex structure, we have a unique
solution given by the Ricci-flat metric in that complex structure. Let us look at the space of all
possible complex structure, and we can deform a solution by changing the complex structure. To
see these two type of solutions, let us look at the nearby metric g → g + h, and linearize Rµν in
this new metric.

• Assuming Rµν = 0 and ∇µhµν = 0, perform this linearization to find he following equation
for h:

∆hµν + 2Rµ
α
ν
βhαβ = 0 . (10)

Here ∆ = ∇α∇α .

Let Eτ = C/Λτ be an elliptic curve with complex structure τ , where Λτ = Zτ ⊕Z ⊂ C .

• Show that Eτ is a complex 1-dimensional Calabi-Yau manifold. Moreover, express the
complex structure τ in terms of the periods of Eτ .

• Let Eτ and Eτ ′ be two elliptic curves with complex structure parameters τ and τ ′ respec-
tively. Show that Eτ and Eτ ′ are biholomorphic iff τ ′ = γτ for some γ ∈ SL2Z.

• Construct a variety X ⊂ P2 given by the locus P (x, y, z) = 0, where [x, y, z] are the homo-
geneous coordinates of P2. By setting the condition c1(TX) != 0 determine the form of P .
Argue that X is also holomorphically isomorphic to an elliptic curve Eτ for some complex
structure τ .

3


