Exercises on Advanced Topics in String Theory

Prof. Dr. Albrecht Klemm, César Fierro-Cota, Rongvoram Nivesvivat
http://www.th.physik.uni-bonn.de/klemm/strings2_19/ PRESENCE EXERCISE

Open-closed duality \& branes I

Consider two parallel Dp-branes at positions $X^{\mu}=0$ and $X^{\mu}=Y^{\mu}$. These two objects feel each other's presence by exchanging clodsed strings as shown in figure 1.

Figure 1: Exchange of a closed string between two D-branes. This is equivalent to a vacuum loop of an open string with one end on each D-brane.

Our task here will be obtaining the tension T_{p} of a Dp-brane. For simplicity, we consider such a computation for bosonic strings first. In section II we generalize this result for Type II strings. We take as a initial point the calculation of the one-loop amplitude \mathcal{A} for an open string stretching between two Dp-branes. The theory is defined on the infinite strip with $\sigma \in[0, \pi]$ and $\tau \in \mathbb{R}$. For the definition of the one-loop partition function, we make the time coordinate τ periodic and consequently obtain the topology of a cylinder. Denote $t \in \mathbb{R}_{>0}$ the modular parameter of the cylinder describing inequivalent cylinders given by $\{(\tau, \sigma): 0 \leq t \leq \pi, 0 \leq \tau \leq 2 \pi t\}$.

1. Show that

$$
\begin{equation*}
\mathcal{A}=V_{p+1} \int_{0}^{\infty} \frac{d t}{t} \frac{1}{\left(8 \pi^{2} \alpha^{\prime} t\right)^{-\frac{(p+1)}{2}}} \exp \left(-\frac{t}{2 \pi \alpha^{\prime}} Y^{2}\right) \frac{1}{\eta^{24}(i t)} \tag{1}
\end{equation*}
$$

2. Relate the modulus of the cylinder due to the one loop open string vacuum $\left.\mathcal{A}\right|_{\text {open }}$ with that of the tree level closed string amplitude $\left.\mathcal{A}\right|_{\text {closed }}$. Using a modular transformation, obtain $\left.\mathcal{A}\right|_{\text {closed }}$.
3. Show that

$$
\begin{equation*}
\left.\mathcal{A}\right|_{\text {massless }}=V_{p+1} \frac{3 \pi}{2^{7}}\left(4 \pi^{2} \alpha^{\prime}\right)^{11-p} G_{25-p}(|Y|) . \tag{2}
\end{equation*}
$$

4. Making use of the following subsection, obtain the tension T_{p} of the corresponding Dp-brane.

$$
\begin{equation*}
T_{p}=\frac{\sqrt{\pi}}{16 \kappa_{0}}\left(4 \pi^{2} \alpha^{\prime}\right)^{\frac{(11-p)}{2}} . \tag{3}
\end{equation*}
$$

A background field interlude (Homework)

In the following, we do a field theory calculation to work out the amplitude for the exchange of the graviton and dilaton between a pair of parallel Dp-branes. Consider the action for a D-brane as follow

$$
\begin{equation*}
S=S_{\mathrm{bulk}}+S_{p} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{\mathrm{bulk}}=\frac{1}{2 \kappa_{0}} \int_{M_{D}} \sqrt{-G} e^{-2 \Phi}\left(\mathcal{R}+4 \nabla_{\mu} \Phi \nabla^{\mu} \Phi\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{p}=-T_{p} \int_{\Sigma_{p+1}} d^{p+1} \xi e^{-\Phi} \operatorname{det}\left(-X^{*} G_{a b}-X^{*} B_{a b}-2 \pi \alpha^{\prime} X^{*} F_{a b}\right) \tag{6}
\end{equation*}
$$

Here M_{D} denotes the D-dimensional target background spacetime and is endowed with a metric $G_{\mu \nu}$ and \mathcal{R} denotes its Ricci scalar. Φ denotes the dilaton field. Σ_{p+1} is the world-volume of the Dp-brane with local coordiantes ξ^{a}. The target space coordinates $X^{\mu}\left(\xi^{a}\right)$ describe the the dilaton field. Σ_{p+1} is the world-volume
embedding of the brane into space-time, i.e.

$$
\begin{equation*}
X: \Sigma_{p+1} \hookrightarrow M_{D} \tag{7}
\end{equation*}
$$

The action (6) is called the Dirac-Born-Infeld action and is written in terms of the pullbacks $X^{*} G_{a b}=\partial_{a} X^{\mu} \partial_{b} X^{\nu} G_{\mu \nu}$, similarly for the $B_{\mu \nu}$ antisymmetric field and the field-strength field $F_{\mu \nu}$.

1. Take the actions S_{bulk} and S_{p} into their Einstein frame form via the following redefinition

$$
\begin{equation*}
\tilde{G}_{\mu \nu}(X)=e^{-\frac{4 \tilde{\Phi}}{D-2}} G_{\mu \nu}(X), \quad \tilde{\Phi}=\Phi-\Phi_{0} . \tag{8}
\end{equation*}
$$

2. Linearise $S_{\text {bulk }}^{E}$ and S_{p}^{E} about a flat background by writing $G_{\mu \nu}(X)=\eta_{\mu \nu}+h_{\mu \nu}(X)$, and expanding up to second order in $h_{\mu \nu}$.
3. Work out the propagators in momentum space for the graviton $\Delta_{G}(k)$ and the dilation $\Delta_{\Phi}(k)$. The result should read

$$
\begin{align*}
\Delta_{G}(k) & =-\frac{2 i \kappa^{2}}{k^{2}}\left(\eta_{\mu \rho} \eta_{\nu \sigma}+\eta_{\mu \sigma} \eta_{\nu \rho}-\frac{2}{D-2} \eta_{\mu \nu} \eta_{\rho \sigma}\right) \tag{9}\\
\Delta_{\Phi}(k) & =-\frac{i \kappa^{2}(D-2)}{4 k^{2}}
\end{align*}
$$

Open-closed duality \& Branes II

Now, we consider the same vacuum cylinder diagram for the open type II string. Due to the fermionic sectors, our trace must sum over the NS and R sectors. Moreover, we must include the GSO projection onto even fermion number. Such an amplitude reads

$$
\begin{equation*}
\mathcal{A}=\int_{0}^{\infty} \frac{d t}{2 t} \operatorname{Tr}_{N S+R}\left(\frac{1+(-1)^{F}}{2} q^{L_{0}-\frac{c}{24}}\right) \tag{10}
\end{equation*}
$$

1. Show that

$$
\begin{equation*}
\mathcal{A}=V_{p+1} \int_{0}^{\infty} \frac{d t}{2 t} \frac{e^{-\frac{t}{2 \pi \alpha^{\prime}} Y^{2}}}{\left(8 \pi^{2} \alpha^{\prime} t\right)^{-\frac{(p+1)}{2}}} \frac{\theta_{3}^{4}(q)-\theta_{2}^{4}(q)-\theta_{4}^{4}(q)}{\eta^{12}(q)} . \tag{11}
\end{equation*}
$$

2. Using the duality $\left.\left.\mathcal{A}\right|_{\text {open }} \longleftrightarrow \mathcal{A}\right|_{\text {closed }}$, can you say something about the physical meaning of (11) for $\left.\mathcal{A}\right|_{\text {closed }}$?
3. Consider the massless modes coupling to the NS-NS sector in $\left.\mathcal{A}\right|_{\text {closed }}$. Similarly as in first section, derive the tension T_{p} of the Dp-branes. Moreover, obtain the Dp-brane charge μ_{p} due to the R-R $(p+1)$-form potential by $\mu_{p} \int_{\Sigma_{p+1}} C_{p+1}$.
