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Condensed Matter Theory I — WS05/06

Exercise 5

(Please return your solutions before 20.12., 13:00 h)

5.1 Quasiparticle distribution function (6 points)
In this exercise we want to study how the presence of an interaction changes the
quasiparticle momentum distribution function nk,σ.

a) Calculate the free distribution function n0
k,σ = 〈a†

kak〉
0 from the bare Green’s

function

G0

k,σ(ω) =
1

iω − εk

in the limit T → 0. Discuss the difference of nk,σ with respect to the Fermi-Dirac
distrubution.

b) Show that the distribution function from a) has a discontinuity at k = kF and
calculate the size of this step.

c) Now consider the renormalised Green’s function from exercise 4.2

Gk,σ(ω) =
z

iω − (ε∗k − µ∗)
+ Gincoh

k,σ (ω)

The incoherent part Gincoh
k,σ (ω) contains the higher order corrections around the

pole and is a continous function at k = kF . It has been neglected in exercise
4.2. Do the same calculations as for the free Green’s function, 5.1 a), b), and
compare the result with the one from above.

5.2 Quasiparticle lifetime (10 points)
In the lecture the concept of quasiparticles was introduced. In this exercise we will find
a microscopic reason why this is in normal Fermi liquids an appropriate description
at least in the case of low-temperature excitations. Therefore we will calculate the
lifetime of these excitations in the limit ω → 0, T = 0.

a) What is the connection between the imaginary part of the single particle self
energy and the lifetime τ of an excitation?

b) In first order perturbation theory the self energy is always real as we saw in
exercise 4.5. Therefore we have to do a second order calculation now. Con-
sider again the local potential from exercise 3.3 and show that the self energy



corresponding to the Feynman diagram of Fig. 1 is given by:

Σk,σ(ω) = −2V 2

0

∑

k′,k′′

∑

ωn

f(εk′′) (1 − f(εk′+k′′))

iω − iωn − εk−k′

·

(

1

iωn + εk′′ − εk′+k′′

−
1

iωn − εk′′ + εk′+k′′

)

c) Perform the limit T → 0 and the continuation to real frequencies and show that
the imaginary part of the self energy is given by:

Im (Σk,σ(ω)) = 2V 2

0

∑

k′, k′′

ε
k′′ < 0 < ε

k′

ε
k+k′′

−k′ > 0

δ(ω − εk′ + εk′′ − εk+k′′−k′)

−
∑

k′, k′′

ε
k′′ < 0 < ε

k′

ε
k+k′′

−k′ < 0

δ(ω + εk′ − εk′′ − εk+k′′−k′)

d) In general the convolution of the momenta prohibits the calculation of the re-
maining sums. For an general estimate we will therefore neglect the momentum
conservation and rewrite the last result as

〈Im (Σσ(ω))〉k ∼ V 2

0

∑

k′,k′′,k′′′

ε
k′′

<0<ε
k′

,ε
k′′′

δ(ω − εk′ + εk′′ − εk′′′)

−
∑

k′,k′′,k′′′

ε
k′′

,ε
k′′′

<0<ε
k′

δ(ω + εk′ − εk′′ − εk′′′)

Assume that the density of states is bounded (N(ε) ≤ N0). Show that we can
estimate the imaginary part of the self energy by

Im (Σk,σ(ω)) ∼ V 2

0 N3

0 ω2

e) Use the results of a) and d) to show 1/τ ∼ ω2. What does this result mean for
the validity of the quasiparticle concept? Discuss under which conditions the
behavior 1/τ ∼ ω2 can break down.

Figure 1: Second Order Self Energy Contribution


